Humidity sensitive resistor

Product Manual

HR202L

www.aosong.com
1. Product Overview

HR202L hygristor is to a new moisture-sensitive components of organic polymer materials, has a sense of wet wide range, fast response, anti-pollution ability, without heating the cleaning and long-term use of reliable performance and many other features.

2. Dimensions (Unit: mm)

![Dimensions Diagram]

3. Range of applications

Used to display temperature and humidity meter, temperature and humidity gift table, atmospheric environmental monitoring, industrial process control, agriculture, measuring instruments and other applications.

4. Features

Outlook is smart, long-term stability, wide temperature and humidity measuring range, high and low temperature humidity measurement precision.

5. Circuit diagram

![Circuit Diagram]
5. **Product parameters**

- Fixed voltage: 1.5V AC (Max, sine wave)
- Fixed power: 0.2mW (Max, sine wave)
- Operating frequency: 500Hz ~ 2kHz
- Operating temperature: 0 ~ 60 °C
- Use Humidity: 95% RH (non-condensing)
- Wet hysteresis difference: $\leq 2\%$ RH
- Response time: moisture, ≤ 20S; dehumidifying ≤ 40S
- Stability: $\leq 1\%$ RH / year
- The humidity detection accuracy: $\leq \pm 5\%$ RH

Relative humidity

- Conditions: at 25 °C 1kHz 1V AC (sine wave)
- Humidity: 60% RH
- Central value: 31 KΩ
- Impedance values range: 19.8 ~ 50.2 KΩ
- Humidity detection accuracy: $\pm 5\%$ RH

6. **Standard test conditions**

Atmosphere, the temperature was 25°C, measurement frequency of 1kHz, measured voltage 1V AC (sine wave) as a reference. Characteristic measurement, measured before the first humidity sensor placed in the dry air of 25°C / 0%RH for 30 minutes, humidity generating means generating the humidity of 60%RH, after 15 minutes into the humidity sensor measured impedance value.

Measuring device:

- Split humidity generating device : AHR – 1
- LCR Bridge : TH2810A
- Measurement line : 1 core shielded cable
Stability testing:

<table>
<thead>
<tr>
<th>No.</th>
<th>Project</th>
<th>Test methods</th>
<th>Specifications value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pin strength</td>
<td>0.5kg leads Rally 10 seconds</td>
<td>No damage, pin off Electrical characteristics normally</td>
</tr>
<tr>
<td>2</td>
<td>Impact resistance</td>
<td>Hard texture board 1m height naturally fall was repeated three times.</td>
<td>No damage, pin off Electrical characteristics normally</td>
</tr>
<tr>
<td>3</td>
<td>Resistance to shock</td>
<td>A frequency of 10 ~ 55Hz, amplitude 1.5mm (10 ~ 55Hz ~ 10Hz) to the direction of X-Y-Z 2 hours each vibration test</td>
<td>No damage, pin off Electrical characteristics normally</td>
</tr>
<tr>
<td>4</td>
<td>Heat resistance</td>
<td>Temperature 80 °C, humidity 30% RH 1000 hours following air</td>
<td>± 5%RH Within</td>
</tr>
<tr>
<td>5</td>
<td>Cold resistance</td>
<td>Temperature of 10 °C, humidity 70% RH 1000 hours following air</td>
<td>± 5%RH Within</td>
</tr>
<tr>
<td>6</td>
<td>Moisture resistance</td>
<td>Temperature of 40 °C, humidity 90% RH 1000 hours following air</td>
<td>± 5%RH Within</td>
</tr>
<tr>
<td>7</td>
<td>Temperature cycling</td>
<td>0°C placed under 30 minutes, And then transferred to 50°C for 30 minutes, Then placed in 0°C for 30 minutes, 5 cycles</td>
<td>± 5%RH Within</td>
</tr>
<tr>
<td>8</td>
<td>Humidity cycling</td>
<td>25 °C, 30% RH for 30 minutes, And then transferred to 90% RH for 30 minutes, 30% RH for 30 minutes and then placed 5 cycles.</td>
<td>± 5%RH Within</td>
</tr>
<tr>
<td>9</td>
<td>Resistance to organic solvents</td>
<td>At room temperature organic solvents 30 minutes of ethanol gas The acetone gas is 30 minutes</td>
<td>± 5%RH Within</td>
</tr>
<tr>
<td>10</td>
<td>Energized placed</td>
<td>Normal temperature and humidity 1kH 5Vp-p connection standing for 1,000 hours</td>
<td>± 5%RH 以内</td>
</tr>
</tbody>
</table>

Unit value change amount to a humidity of 60% RH as the reference.
After each test, a humidity sensor placed in normal air of normal temperature and humidity for 24 hours was measured after the humidity change amount.
7. Relative humidity – impedance characteristics

<table>
<thead>
<tr>
<th></th>
<th>0℃</th>
<th>5℃</th>
<th>10℃</th>
<th>15℃</th>
<th>20℃</th>
<th>25℃</th>
<th>30℃</th>
<th>35℃</th>
<th>40℃</th>
<th>45℃</th>
<th>50℃</th>
<th>55℃</th>
<th>60℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%RH</td>
<td>10M</td>
<td>6.7 M</td>
<td>5.0 M</td>
<td>3.9 M</td>
<td>3.0 M</td>
<td>2.4 M</td>
<td>1.75 M</td>
<td>1.45 M</td>
<td>1.15 M</td>
<td>970K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%RH</td>
<td>4.6 M</td>
<td>3.2 M</td>
<td>2.3 M</td>
<td>1.75 M</td>
<td>1.3 M</td>
<td>970K</td>
<td>740K</td>
<td>570K</td>
<td>420K</td>
<td>270K</td>
<td>215K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%RH</td>
<td>2.9 M</td>
<td>2.1 M</td>
<td>1.5 M</td>
<td>1.1 M</td>
<td>1 M</td>
<td>850K</td>
<td>630K</td>
<td>460K</td>
<td>380K</td>
<td>280K</td>
<td>170K</td>
<td>150K</td>
<td>130K</td>
</tr>
<tr>
<td>35%RH</td>
<td>1.4 M</td>
<td>1.0 M</td>
<td>0.75K</td>
<td>0.54K</td>
<td>0.42K</td>
<td>0.31K</td>
<td>0.235K</td>
<td>0.19K</td>
<td>0.14K</td>
<td>0.088K</td>
<td>0.07K</td>
<td>0.057K</td>
<td></td>
</tr>
<tr>
<td>40%RH</td>
<td>700K</td>
<td>500K</td>
<td>380K</td>
<td>280K</td>
<td>210K</td>
<td>160K</td>
<td>125K</td>
<td>100K</td>
<td>78K</td>
<td>64K</td>
<td>50K</td>
<td>41K</td>
<td>34K</td>
</tr>
<tr>
<td>45%RH</td>
<td>370K</td>
<td>260K</td>
<td>200K</td>
<td>150K</td>
<td>115K</td>
<td>87K</td>
<td>69K</td>
<td>56K</td>
<td>45K</td>
<td>38K</td>
<td>31K</td>
<td>25K</td>
<td>21K</td>
</tr>
<tr>
<td>50%RH</td>
<td>190K</td>
<td>140K</td>
<td>110K</td>
<td>84K</td>
<td>64K</td>
<td>49K</td>
<td>39K</td>
<td>33K</td>
<td>27K</td>
<td>24K</td>
<td>19.5K</td>
<td>17K</td>
<td>14K</td>
</tr>
<tr>
<td>55%RH</td>
<td>105K</td>
<td>80K</td>
<td>62K</td>
<td>50K</td>
<td>39K</td>
<td>31K</td>
<td>25K</td>
<td>20K</td>
<td>17.5K</td>
<td>15K</td>
<td>13K</td>
<td>11K</td>
<td>9.4K</td>
</tr>
<tr>
<td>60%RH</td>
<td>62K</td>
<td>48K</td>
<td>37K</td>
<td>30K</td>
<td>24K</td>
<td>19.5K</td>
<td>16K</td>
<td>13K</td>
<td>11.5K</td>
<td>10K</td>
<td>8.6K</td>
<td>7.6K</td>
<td>6.8K</td>
</tr>
<tr>
<td>65%RH</td>
<td>38K</td>
<td>30K</td>
<td>24K</td>
<td>19K</td>
<td>15.5K</td>
<td>13K</td>
<td>10.5K</td>
<td>9K</td>
<td>8.0K</td>
<td>7K</td>
<td>6.0K</td>
<td>5.4K</td>
<td>4.8K</td>
</tr>
<tr>
<td>70%RH</td>
<td>23K</td>
<td>18K</td>
<td>15K</td>
<td>12K</td>
<td>10K</td>
<td>8.4K</td>
<td>7.2K</td>
<td>6.2K</td>
<td>5.6K</td>
<td>4.9K</td>
<td>4.2K</td>
<td>3.8K</td>
<td>3.4K</td>
</tr>
<tr>
<td>75%RH</td>
<td>15.5K</td>
<td>12.5K</td>
<td>10.0K</td>
<td>8.0K</td>
<td>7.0K</td>
<td>5.7K</td>
<td>5.0K</td>
<td>4.3K</td>
<td>3.9K</td>
<td>3.4K</td>
<td>3.0K</td>
<td>2.7K</td>
<td>2.5K</td>
</tr>
<tr>
<td>80%RH</td>
<td>10.5K</td>
<td>8.2K</td>
<td>6.8K</td>
<td>5.5K</td>
<td>4.8K</td>
<td>4.0K</td>
<td>3.5K</td>
<td>3.1K</td>
<td>2.8K</td>
<td>2.4K</td>
<td>2.1K</td>
<td>1.9K</td>
<td>1.8K</td>
</tr>
<tr>
<td>85%RH</td>
<td>7.1K</td>
<td>5.3K</td>
<td>4.7K</td>
<td>4.0K</td>
<td>3.3K</td>
<td>2.8K</td>
<td>2.5K</td>
<td>2.2K</td>
<td>2.0K</td>
<td>1.8K</td>
<td>1.55K</td>
<td>1.4K</td>
<td>1.3K</td>
</tr>
</tbody>
</table>

8. Electrical impedance R (Ω)

![Graph of electrical impedance R (KΩ)](image-url)
9、Sample code

/********************
SCM: SN8P2501B
Crystal: built-in 16M 4 Divide
Subroutine instructions:
_interrupt lnln() Timer interrupt function
StartOneTimeSample(void) Perform a detection operation
********************/

typedef struct
{
 unsigned char u8WhtchIOCharge;
 unsigned long u16ChargeTimeIo; // Fixed resistor charging time
 unsigned long u16ChargeTimeHumi; // Humidity resistance charging time
} ChargeTyPe;

#define CHARGE_HUMIDITY_IO_HIGH() FP21 = 1
#define CHARGE_HUNIDITY_IO_LOW() FP21 = 0
#define CHARGE_IO_HIGH() FP20 = 1
#define CHARGE_IO_LOW() FP20 = 0
#define CHARGE_IO_HI() P2M = 0X00
#define _F_data 20

__interrupt lnln()
{
 WDTR = 0X5A; // Watchdog
 T0C = _F_data;
 m_st_ChargeType.u8WhtchIOCharge++;

 if(m_st_ChargeType.u8WhtchIOCharge&0x80) // Wet charge
 {
 if(m_st_ChargeType.u8WhtchIOCharge >= 0x84) //High and low pulse 3:1
 {
 CHARGE_HUMIDITY_IO_LOW();
 m_st_ChargeType.u8WhtchIOCharge = 0x80;
 } else if(m_st_ChargeType.u8WhtchIOCharge >= 0x81)
 {
 CHARGE_HUMIDITY_IO_HIGH();
 }
 }
else
{
 if(m_st_ChargeType.u8WihtchIOCharge == 0x01)// Standard Charge
 {
 CHARGE_IO_HI();
 }
 else if(m_st_ChargeType.u8WihtchIOCharge == 0x04)// High and low pulse 3:1
 {
 CHARGE_IO_LOW();
 m_st_ChargeType.u8WihtchIOCharge = 0x00;
 }
}

m_st_ChargeType.u16ChargeTimeIo++;
FT0IRQ = 0; //clear t0 irq flag
}

void StartOneTimeSample(void)
{
 CHARGE_IO_HI(); // P1 port into input as a high impedance
 m_st_ChargeType.u16ChargeTimeIo = 0; // Variable initialization
 if(m_st_ChargeType.u8WihtchIOCharge&0x80)
 {
 FP21M = 1; // Export
 CHARGE_HUNIDITY_IO_LOW();
 }
 else
 {
 FP20M = 1; // Export
 CHARGE_IO_LOW();
 }

delay1N(2); // Delay to wait for the port stable
T0C = F_data; // Hutchison values from the new loading
FT0ENB = 1; // Timer automatically measured
while(1)
{
 if(FP22) // Detecting the charging threshold
 {
 FT0ENB = 0; // Threshold to OFF timer
 if(m_st_ChargeType.u8WihtchIOCharge&0x80)
 {
 m_st_ChargeType.u16ChargeTimeHumi = m_st_ChargeType.u16ChargeTimeIo;
 break;
 }
 }

 P2M = 0X23;
 P2 = 0X00; // Discharge
 FP22M = 1;
 FP22 = 0;
 delay1N(100);
 FP22M = 0;
}
10. License Agreement

In any form or by any means, whether electronic or mechanical (including photocopying), copy any part of this manual, nor may its contents be communicated to a third party without the prior written permission of the copyright holder. The contents are subject to change without notice.

Has AOSONG and third-party ownership of the software, the user may proceed only after the signing of a contract or license to use software.

11. Warnings and personal injury

This product is not applied in the safety protection device or an emergency stop device, and the product failure may lead to any other application of injury in. Shall not be used this product unless there is a special purpose or use authorization. Refer to the product data sheets and Application guide in the installation, processing, use or maintenance of the products before. If not honor this suggestion, could result in death or serious personal injury. The company will not be liable for the resulting in personal injury and death and all damages, from managers and employees of the company and affiliated agents, distributors may have any claim, including: all the costs, expenses, attorney fees etc..