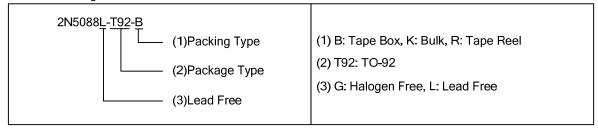

2N5088/2N5089

NPN EPITAXIAL SILICON TRANSISTOR

NPN GENERAL PURPOSE **AMPLIFIER**

DESCRIPTION


The devices are designed for low noise, high gain, general purpose amplifier applications at collector currents from 1µA ~ 50mA.

ORDERING INFORMATION

Order Number		Dookogo	Pin	Assignm	Doolsing		
Lead Free	Halogen Free	Package	1	2	3	Packing	
2N5088L-T92-B	2N5088G-T92-B	2N5088G-T92-B TO-92 E		В	С	Tape Box	
2N5088L-T92-K	2N5088G-T92-K	TO-92	Е	В	С	Bulk	
2N5088L-T92-R	2N5088G-T92-R	TO-92	-92 E B C		С	Tape Reel	
2N5089L-T92-B	2N5089G-T92-B	TO-92	Е	В	С	Tape Box	
2N5089L-T92-K	2N5089G-T92-K	TO-92	Е	В	С	Bulk	
2N5089L-T92-R	2N5089G-T92-R	TO-92	Е	В	С	Tape Reel	

Note: Pin Assignment: E: Emitter B: Base C: Collector

www.unisonic.com.tw 1 of 3 QW-R201-040.Ba

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT	
Collector-Emitter voltage	2N5088	.,,	30	V	
	2N5089	V _{CEO}	25	V	
Collector-Base voltage	2N5088]	35	V	
	2N5089	V _{CBO}	30	V	
Emitter-Base Voltage		V_{EBO}	4.5	V	
Collector Current-Continuous		Ic	100	mA	
Power Dissipation		_	625	mW	
Derate Above 25℃		P_D	5	mW/℃	
Junction Temperature		T_J	150	$^{\circ}$	
Storage Temperature		T _{STG}	-55 ~ + 150	$^{\circ}$	

Note 1. These ratings are based on a maximum junction temperature of 150 degrees C.

- 2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
- 3. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **THERMAL DATA** (T_A=25°C, unless otherwise noted)

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	200	°C/W
Junction to Case	θјс	83.3	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS								
Collector-Emitter	2N5088	(((BR)CEO IC=1.0mA, I _B =0 (Note)		30			V
Breakdown Voltage	2N5089	V(BR)CEO			25			
Collector-Base Breakdown	2N5088],,	$V_{(BR)CBO}$ $I_{C}=100\mu A, I_{E}=0$		35			V
Voltage	2N5089	V (BR)CBO			30			
Collector Cut-Off Current	2N5088	I _{CBO}	V _{CB} =20V, I _E =0				50	nA
	2N5089		V _{CB} =15V, I _E =0				50	
Emitter Cutoff Current		I _{EBO}	V _{EB} =3.0V, I _C =0				50	nA
			V _{EB} =4.5V, I _C =0				100	
			\/ 50\/ 1 400 A	2N5088	300		900	
			V_{CE} =5.0V, I_{C} =100 μ A	2N5089	400		1200	
DC Commont Coin			V _{CE} =5.0V, I _C =1.0mA	2N5088	350			
DC Current Gain		h _{FE}		2N5089	450			
			V _{CE} =5.0V, I _C =10mA (Note)	2N5088	300			
				2N5089	400			
Collector-Emitter Saturation Voltage		V _{CE(SAT)}	I _C =10mA, I _B =1.0mA			0.5	V	
Base-Emitter On Voltage		V _{BE(ON)}	I _C =10mA, V _{CE} =5.0V			0.8	V	
SMALL SIGNAL CHARACT	ERISTICS							
Current Gain-Bandwidth Product		f _T	V _{CE} =5.0mA, I _C =500μA, f=20MHz		50			MHz
Collector-Base Capacitance		ССВ	V _{CB} =5.0V, I _E =0, f=100kHz				4	pF
Emitter-Base Capacitance		CEB	V _{EB} =0.5V, I _C =0, f=100kHz				10	pF
Small-Signal Current Gain	2N5088 2N5089	h _{FE}	V _{CE} =5.0V, I _C =1.0mA, f=1.0kHz		350	_	1400	
					450		1800	
N	2N5088	NIE	V_{CE} =5.0V, I_{C} =100μA, R_{S} =10kΩ,				3.0	-10
Noise Figure	2N5089	NF	f=10KHz ~ 15.7kHz				2.0	dB

Note Pulse Test: Pulse Width≤300µs, Duty Cycle≤2.0%

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

