

LT4320/LT4320-1

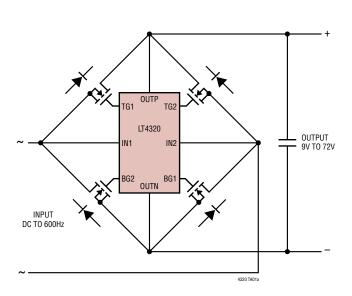
Ideal Diode Bridge Controller

FEATURES

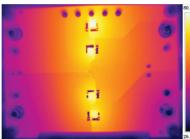
- Maximizes Power Efficiency
- Eliminates Thermal Design Problems
- DC to 600Hz
- 9V to 72V Operating Voltage Range
- I_Q = 1.5mA (Typical)
- Maximizes Available Voltage
- Available in 8-Lead (3mm × 3mm) DFN and 12-Lead MSOP Packages

APPLICATIONS

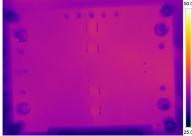
- Security Cameras
- Terrestrial or Airborne Power Distribution Systems
- Power-over-Ethernet Powered Device with a Secondary Input
- Polarity-Agnostic Power Input
- Diode Bridge Replacement


DESCRIPTION

The LT®4320/LT4320-1 are ideal diode bridge controllers that drive four N-channel MOSFETs, supporting voltage rectification from DC to 600Hz. By maximizing available voltage and reducing power dissipation (see thermograph comparison below), the ideal diode bridge simplifies power supply design and reduces power supply cost, especially in low voltage applications.


An ideal diode bridge also eliminates thermal design problems, costly heat sinks, and greatly reduces PC board area. The LT4320's internal charge pump supports an all-NMOS design, which eliminates larger and more costly PMOS switches. If the power source fails or is shorted, a fast turn-off minimizes reverse current transients.

The LT4320 is designed for DC to 60Hz voltage rectification, while the LT4320-1 is designed for DC to 600Hz voltage rectification. Higher frequencies of operation are possible depending on MOSFET size and operating load current.



Thermograph of Passive Diode Bridge

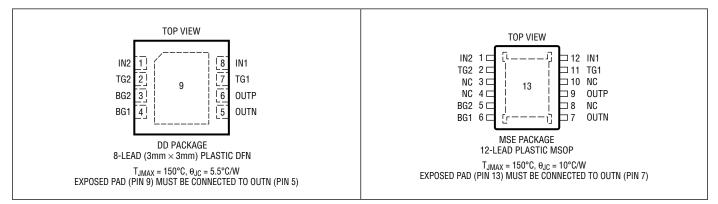
SBM1040 (×4)

Thermograph of LT4320 Driving Four MOSFETs

 $\label{eq:LT4320+2.5m} \begin{array}{c} LT4320+2.5m\Omega \mbox{ FET (\times4$)} \\ \mbox{CONDITIONS: 24V AC}_{IN} \mbox{ 9.75A DC LOAD ON SAME PCB} \end{array}$

Temperature Rise (°C)			
MOSFET 2.5mΩ	DIODE SBM 1040		
0.6	15		
3.5	32		
6.7	49		
11	66		
16	84		
	MOSFET 2.5mΩ 0.6 3.5 6.7 11		

DC Input, On Same PCB



ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)

Supply Voltages	
IN1, IN2	–3V to 80V
OUTP	–0.3V to 80V
Output Voltages (Note 3)	
BG1, BG2, TG1, TG2	–0.3V to 80V
TG1-IN1, TG2-IN2	0.3V to 12V

Operating Junction Temperature Range
LT4320I–40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec)
MSE Package

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	OPERATING JUNCTION Temperature range
LT4320IDD#PBF	LT4320IDD#TRPBF	LGCV	8-Lead ($3mm \times 3mm$) Plastic DFN	–40°C to 85°C
LT4320IDD-1#PBF	LT4320IDD-1#TRPBF	LGCW	8-Lead ($3mm \times 3mm$) Plastic DFN	–40°C to 85°C
LT4320IMSE#PBF	LT4320IMSE#TRPBF	4320	12-Lead Plastic MSOP	-40°C to 85°C
LT4320IMSE-1#PBF	LT4320IMSE-1#TRPBF	43201	12-Lead Plastic MSOP	–40°C to 85°C

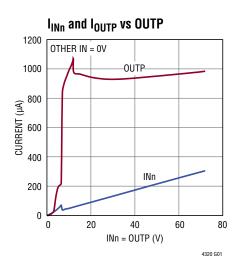
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.

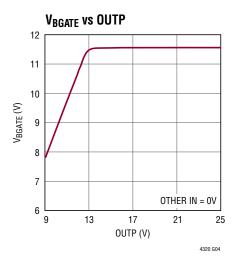
Consult LTC Marketing for information on nonstandard lead based finish parts.

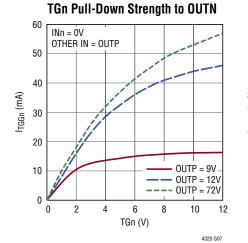
For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

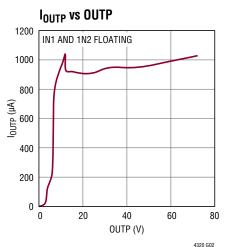
4320f

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. (Note 2)

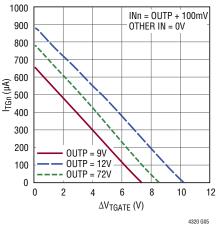

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
OUTP Voltage Range		٠	9		72	V
OUTP Undervoltage Lockout (UVLO) Threshold	INn = OUTP, Other IN = 0V	٠	6.2	6.6	7.0	V
INn Turn-On/Off Threshold	OUTP = 9V, Other IN = 0V	٠	1.3		3.7	V
OUTP Pin Current	INn = OUTP+ $\Delta V_{SD(MAX)}$ + 5mV, Other IN = 0V	•		1.0	1.5	mA
INn Pin Current at 9V at 72V	INn = OUTP+ $\Delta V_{SD(MAX)}$ + 5mV, Other IN = 0V	•		44 0.3	63 0.4	μA mA
Topside Source-Drain Regulation Voltage (INn – OUTP) LT4320 LT4320-1		•	8 26	20 40	35 55	mV mV
Top Gate Drive (TGn – INn)	INn = OUTP+ $\Delta V_{SD(MAX)}$ + 5mV, 10µA Out of TGn, Other IN = 0V	•	6.6		10.8	V
Bottom Gate Drive (BGn)	INn = OUTP, 10µA Out of BGn, Other IN = OV	•	7.0		12	V
Top Gate Pull-Up Current	TGn – INn = 0V, INn = 0UTP + 0.1V TGn – INn = 5V, INn = 0UTP + 0.1V Current Flows Out of TGn, Other IN = 0V	•	425 120			μΑ μΑ
Top Gate Pull-Down Current to INn	TGn – INn = 5V, INn = OUTP – 0.25V Current Flows Into TGn, Other IN = 0V	•	1.25			mA
Top Gate Pull-Down Current to OUTN	INn = 0V, Other IN = OUTP = 9.0V, TGn = 5V Current Flows Into TGn	•	6.0			mA
Bottom Gate Pull-Up Current	BGn = 5V; INn = OUTP = 9.0V, Other IN = 0V Current Flows Out of BGn	•	1.9			mA
Bottom Gate Pull-Down Current	BGn = 5V; INn = 0V, Other IN = OUTP = 9.0V Current Flows Into BGn	•	12.5			mA
	OUTP Voltage Range OUTP Undervoltage Lockout (UVLO) Threshold INn Turn-On/Off Threshold OUTP Pin Current INn Pin Current at 9V at 72V Topside Source-Drain Regulation Voltage (INn – OUTP) LT4320-1 Top Gate Drive (TGn – INn) Bottom Gate Drive (BGn) Top Gate Pull-Up Current Top Gate Pull-Down Current to INn Top Gate Pull-Down Current to OUTN Bottom Gate Pull-Up Current	OUTP Voltage RangeOUTP Undervoltage Lockout (UVLO) ThresholdINn = OUTP, Other IN = 0VINn Turn-On/Off ThresholdOUTP = 9V, Other IN = 0VOUTP Pin CurrentINn = OUTP $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0VINn Pin Current at 9V at 72VINn = OUTP $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0VTopside Source-Drain Regulation Voltage (INn - OUTP) LT4320 LT4320-1INn = OUTP $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0VTop Gate Drive (TGn - INn)INn = OUTP $\Delta V_{SD(MAX)} + 5mV$, 10µA Out of TGn, Other IN = 0VBottom Gate Drive (BGn)INn = OUTP, 10µA Out of BGn, Other IN = 0VTop Gate Pull-Up CurrentTGn - INn = 0V, INn = OUTP + 0.1V TGn - INn = 5V, INn = OUTP + 0.1V Current Flows Out of TGn, Other IN = 0VTop Gate Pull-Down Current to OUTNINn = 0V, Other IN = 0UTP + 0.2SV Current Flows Into TGn, Other IN = 0VTop Gate Pull-Down Current to OUTNINn = 0V, Other IN = 0UTP - 0.2SV Current Flows Into TGn, Other IN = 0VBottom Gate Pull-Down Current to OUTNINn = 0V, Other IN = 0UTP = 9.0V, TGn = 5V Current Flows Into TGnBottom Gate Pull-Down CurrentBGn = 5V; INn = OUTP = 9.0V, Other IN = 0V Current Flows Out of BGnBottom Gate Pull-Down CurrentBGn = 5V; INn = 0V, Other IN = 0V Current Flows Out of BGn	OUTP Voltage Range•OUTP Undervoltage Lockout (UVLO) ThresholdINn = OUTP, Other IN = 0V•INn Turn-On/Off ThresholdOUTP = 9V, Other IN = 0V•OUTP Pin CurrentINn = OUTP $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V•INn Pin Current at 9V at 72VINn = OUTP $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V•Topside Source-Drain Regulation Voltage (INn - OUTP) LT4320 LT4320-1INn = OUTP $\Delta V_{SD(MAX)} + 5mV$, 10µA Out of Top Gate Drive (TGn - INn)•Top Gate Drive (GGn)INn = OUTP $\Delta V_{SD(MAX)} + 5mV$, 10µA Out of TGn , Other IN = 0V•Top Gate Pull-Up CurrentTGn - INn = 0V, INn = OUTP + 0.1V TGn - INn = 5V, INn = OUTP + 0.1V Current Flows Out of TGn, Other IN = 0V•Top Gate Pull-Down Current to INnTGn - INn = 5V, INn = OUTP + 0.1V Current Flows Into TGn, Other IN = 0V•Top Gate Pull-Down Current to OUTNINn = 0V, Other IN = 0UTP - 0.25V Current Flows Into TGn, Other IN = 0V•Bottom Gate Pull-Down CurrentBGn = 5V; INn = OUTP = 9.0V, TGn = 5V Current Flows Out of BGn•Bottom Gate Pull-Down CurrentBGn = 5V; INn = 0V, Other IN = 0V•	OUTP Voltage Range9OUTP Undervoltage Lockout (UVL0) ThresholdINn = OUTP, Other IN = 0V6.2INn Turn-On/Off ThresholdOUTP = 9V, Other IN = 0V1.3OUTP Pin CurrentINn = OUTP+ $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V1.3OUTP Pin CurrentINn = OUTP+ $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V•INn Pin CurrentINn = OUTP+ $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V•at 9Vat 72V••Topside Source-Drain Regulation Voltage (INn – OUTP) LT4320•8LT4320-1••8Top Gate Drive (TGn – INn)INn = OUTP+ $\Delta V_{SD(MAX)} + 5mV$, 10µA Out of TGn, Other IN = 0V•Bottom Gate Drive (BGn)INn = OUTP, 10µA Out of BGn, Other IN = 0V•Top Gate Pull-Up CurrentTGn – INn = 0V, INn = OUTP + 0.1V Current Flows Out of TGn, Other IN = 0V•Top Gate Pull-Down Current to INnTGn – INn = 5V, INn = OUTP - 0.25V Current Flows Into TGn, Other IN = 0V•Top Gate Pull-Down Current to OUTNINn = 0V, Other IN = 0UTP = 9.0V, TGn = 5V Current Flows Into TGn•6.0Bottom Gate Pull-Down CurrentBGn = 5V; INn = OUTP = 9.0V, Other IN = 0V•1.9Bottom Gate Pull-Down CurrentBGn = 5V; INn = 0UTP = 9.0V, Other IN = 0V•1.9	OUTP Voltage Range9OUTP Undervoltage Lockout (UVL0) ThresholdINn = OUTP, Other IN = 0V6.26.6INn Turn-On/Off ThresholdOUTP = 9V, Other IN = 0V1.3OUTP Pin CurrentINn = OUTP + $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V1.0INn Pin CurrentINn = OUTP + $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V44at 9Vat 72VINn = OUTP + $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V6.6Topside Source-Drain Regulation Voltage (INn - OUTP) LT4320 LT4320-1INn = OUTP + $\Delta V_{SD(MAX)} + 5mV$, 10µA Out of Gate Drive (TGn - INn)820Top Gate Drive (IGn)INn = OUTP + $\Delta V_{SD(MAX)} + 5mV$, 10µA Out of TGn, Other IN = 0V6.66.6Bottom Gate Drive (BGn)INn = OUTP, 10µA Out of BGn, Other IN = 0V7.0Top Gate Pull-Up CurrentTGn - INn = 0V, INn = OUTP + 0.1V Current Flows Out of Gn, Other IN = 0V425Top Gate Pull-Down Current to INnTGn - INn = 5V, INn = 0UTP + 0.2SV Current Flows Into TGn, Other IN = 0V1.25Top Gate Pull-Down Current to OUTNINn = 0V, Other IN = 0UTP = 9.0V, TGn = 5V Current Flows Into TGn6.0Bottom Gate Pull-Up CurrentBGn = 5V; INn = 0UTP = 9.0V, Other IN = 0V1.9Bottom Gate Pull-Down CurrentBGn = 5V; INn = 0UTP = 9.0V1.1Bottom Gate Pull-Down CurrentBGn = 5V; INn = 0V, Other IN = 0UTP = 9.0V1.2.5	OUTP Voltage Range972OUTP Undervoltage Lockout (UVL0) ThresholdINn = OUTP, Other IN = 0V6.26.67.0INn Turn-On/Off ThresholdOUTP = 9V, Other IN = 0V1.33.7OUTP Pin CurrentINn = OUTP+ $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V1.01.5INn Pin CurrentINn = OUTP+ $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V4463at 9Vat 72VINn = OUTP+ $\Delta V_{SD(MAX)} + 5mV$, Other IN = 0V4463Topside Source-Drain Regulation Voltage (INn – OUTP) LT4320-182035Top Gate Drive (TGn – INn)INn = OUTP+ $\Delta V_{SD(MAX)} + 5mV$, 10µA Out of TGn, Other IN = 0V6.610.8Bottom Gate Drive (BGn)INn = OUTP, 10µA Out of BGn, Other IN = 0V7.012Top Gate Pull-Up CurrentTGn – INn = 0V, INn = OUTP + 0.1V Current Flows Out of TGn, Other IN = 0V425120Top Gate Pull-Down Current to INnTGn – INn = 5V, INn = 0UTP + 0.1V Current Flows Out of TGn, Other IN = 0V1.251.25Top Gate Pull-Down Current to OUTNINn = 0V, Other IN = 0V0.12.51.9Bottom Gate Pull-Down CurrentBGn = 5V; INn = 0UTP = 9.0V, Other IN = 0V1.9Bottom Gate Pull-Down CurrentBGn = 5V; INn = 0V, Other IN = 0UTP = 9.0V1.9Bottom Gate Pull-Down CurrentBGn = 5V; INn = 0V, Other IN = 0VTP = 9.0V1.25

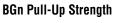

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Unless otherwise specified, exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

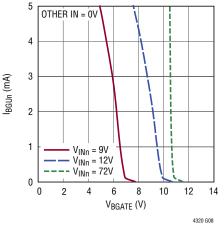

Note 2: All voltages are referenced to OUTN = 0V unless otherwise specified. Note 3: Externally forced voltage absolute maximums. The LT4320 may exceed these limits during normal operation.

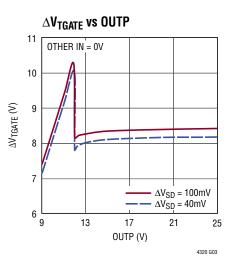

4320

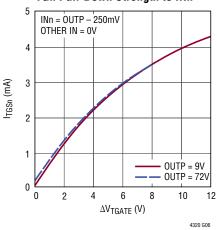
TYPICAL PERFORMANCE CHARACTERISTICS

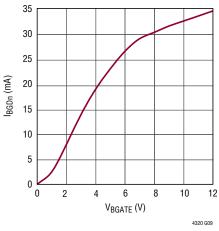












BGn Pull-Down Strength

4320f

PIN FUNCTIONS (DFN/MSOP)

IN2 (Pin 1/Pin 1): Bridge Rectifier Input. IN2 connects to the external NMOS transistors MTG2 source, MBG1 drain and the power input.

TG2 (Pin 2/Pin 2): Topside Gate Driver Output. TG2 pin drives MTG2 gate.

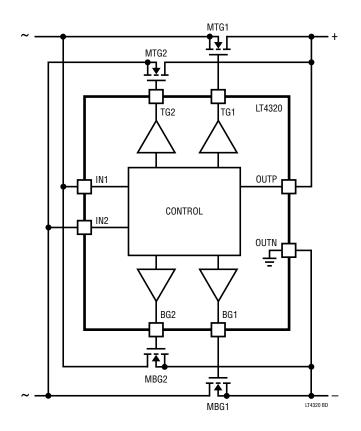
BG2 (Pin 3/Pin 5): Bottom-Side Gate Driver Output. BG2 pin drives MBG2 gate.

BG1 (Pin 4/Pin 6): Bottom-Side Gate Driver Output. BG1 pin drives MBG1 gate.

OUTN (Pin 5/Pin 7): OUTN is the rectified negative output voltage, and connects to the sources of MBG1 and MBG2.

OUTP (Pin 6/Pin 9): OUTP is the rectified positive output voltage that powers the LT4320 and connects to the drains of MTG1 and MTG2.

TG1 (Pin 7/Pin 11): Topside Gate Driver Output. TG1 pin drives MTG1 gate.


IN1 (Pin 8/Pin 12): Bridge Rectifier Input. IN1 connects to the external NMOS transistors MTG1 source, MBG2 drain, and the power input.

NC (Pins 3, 4, 8, 10, MSOP Only): No Connections. Not internally connected.

Exposed Pad (Pin 9/Pin 13): Exposed Pad. Must be connected to OUTN.

BLOCK DIAGRAM

4320f

6

OPERATION

Electronic systems that receive power from an AC power source or a DC polarity-agnostic power source often employ a 4-diode rectifier. The traditional diode bridge comes with an efficiency loss due to the voltage drop generated across two conducting diodes. The voltage drop reduces the available supply voltage and dissipates significant power especially in low voltage applications.

By maximizing available voltage and reducing power dissipation, the ideal diode bridge simplifies power supply design and reduces power supply cost. An ideal diode bridge also eliminates thermal design problems, costly heat sinks, and greatly reduces PC board area.

The LT4320 is designed for DC to 60Hz voltage rectification, while the LT4320-1 is designed for DC to 600Hz voltage rectification. Higher frequencies of operation are possible depending on MOSFET size and operating load current.

Figure 2 presents sample waveforms illustrating the gate pins in an AC voltage rectification design.

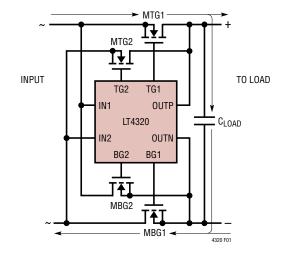


Figure 1. LT4320 with Four N-Channel MOSFETS, Illustrating Current Flow When IN1 Is Positive

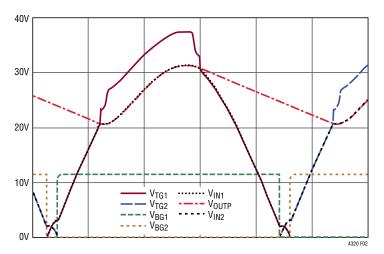


Figure 2. 24V AC Sample Waveform

APPLICATIONS INFORMATION

MOSFET Selection

A good starting point is to reduce the power dissipation of the ideal bridge to 1/10 that of a diode rectifier bridge. Given the average output load current, I_{AVG} , select $R_{DS(ON)}$ to be:

$$R_{DS(ON)} = \frac{70mV}{I_{AVG}}$$
 for a DC power input

or

$$R_{DS(ON)} = \frac{70mV}{3 \cdot I_{AVG}}$$
 for an AC power input

In the AC power input calculation, $3 \bullet I_{AVG}$ assumes the duration of current conduction occupies 1/3 of the AC period.

Select the maximum allowable drain-source voltage, $V_{\text{DSS}},$ to be higher than the maximum input voltage.

Design Example

For a 24W, 12V DC/24V AC application, I_{AVG} = 2A for 12V DC. To cover the 12V DC case:

$$R_{DS(0N)} = \frac{70mV}{2A} = 35m\Omega$$

For the 24V AC operation, I_{AVG} = 1A. To cover the 24V AC case:

$$R_{DS(0N)} = \frac{70mV}{3 \cdot 1A} = 23m\Omega$$

This provides a starting range of $\mathsf{R}_{\mathsf{DS}(\mathsf{ON})}$ values to choose from.

Ensure the MOSFET can handle a continuous current of $3 \cdot I_{AVG}$ to cover the expected peak currents during AC rectification. That is, select $I_D \ge 3A$. Since a 24V AC waveform can reach 34V peak, select a MOSFET with $V_{DSS} >> 34V$. A good choice of V_{DSS} is 60V in a 24V AC application.

Other Considerations in MOSFET Selection

Choose the lowest available total gate charge, Q_G , and correspondingly the lowest C_{ISS} , C_{OSS} , and C_{RSS} . Choosing a lower gate capacitance while meeting $R_{DS(ON)}$ speeds up the response time for full enhancement, regulation, turn-off, and input shorting events.

 $V_{GS(th)}$ must be a minimum of 2V or higher. A gate threshold voltage lower than 2V is not recommended since too much time is needed to discharge the gate below the threshold and halt current conduction during a hot plug or input short event.

C_{LOAD} Selection

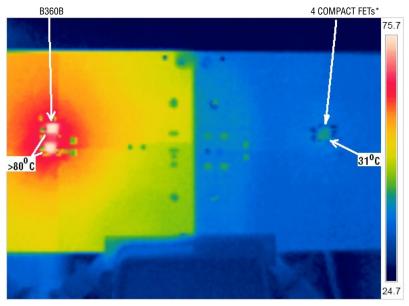
A 1 μ F ceramic and a 10 μ F minimum electrolytic capacitor must be placed across the OUTP and OUTN pins with the 1 μ F ceramic placed as close to the LT4320 as possible. Downstream power needs and voltage ripple tolerance determine how much additional capacitance between OUTP and OUTN is required. C_{LOAD} in the hundreds to thousands of microfarads is common.

A good starting point is selecting C_{LOAD} such that:

 $C_{LOAD} \ge I_{AVG} / (V_{RIPPLE} \bullet 2 \bullet Freq)$

where I_{AVG} is the average output load current, V_{RIPPLE} is the maximum tolerable output ripple voltage, and Freq is the frequency of the input AC source. For example, in a 60Hz, 24VAC application where the load current is 1A and the tolerable ripple is 15V, choose $C_{LOAD} \ge 1A/(15V \cdot 2 \cdot 60Hz) = 556\mu F$.

 C_{LOAD} must also be selected so that the rectified output voltage, OUTP-OUTN, must be within the LT4320/LT4320-1 specified OUTP voltage range.


Transient Voltage Suppressor

For applications that may encounter brief overvoltage events higher than the LT4320 absolute maximum rating, install a unidirectional transient voltage suppressor (TVS) between the OUTP and OUTN pins as close as possible to the LT4320.

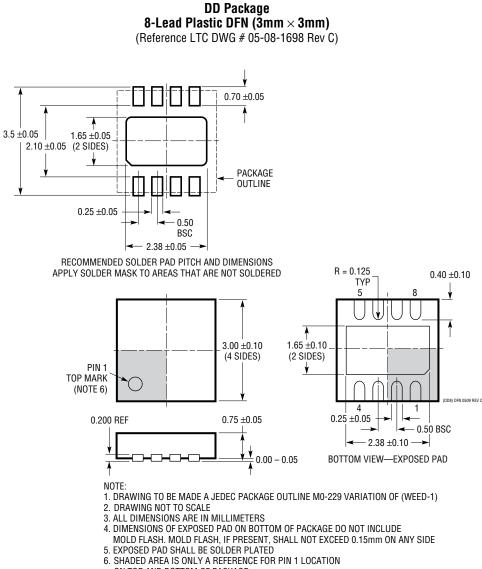
43201

TYPICAL APPLICATIONS

CONDITION: 13VDCIN, 3A LOAD ON SAME PCB

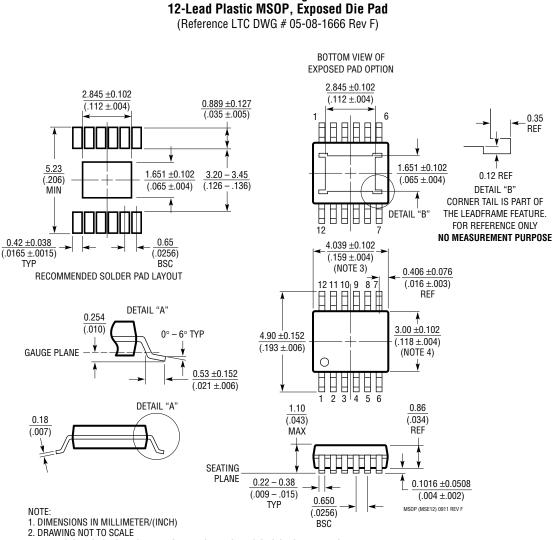
*19mΩ, 60V EACH FET

Figure 3. Thermograph: B360B vs LT4320 +4 Compact FETs


Figure 4. Demonstration Circuit 1902A Used in Figure 3 Thermograph

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.



ON TOP AND BOTTOM OF PACKAGE

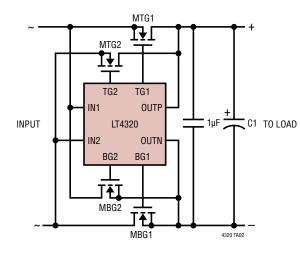
PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

MSE Package

3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.


- INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
- 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL

NOT EXCEED 0.254mm (.010") PER SIDE.

TYPICAL APPLICATION

LT4320 IDEAL BRIDGE					DIODE BRIDGE
MTG1,MTG2 MBG1, MBG2	OPERATING Voltage	LOAD Current	C1 (MIN)	POWER LOSS	POWER LOSS
BSZ110N06NS3	55V DC	3.5A	10µF	0.22W	4.2W
	24V AC	1.5A	560µF	0.13W	1.9W
	55V DC	30A	10µF	4.5W	36W
BSC031N06NS3	24V AC	10A	3.3mF	1.6W	12W
PSMN040-100MSE	72V DC	2A	10µF	0.24W	2.4W

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC4352	Low Voltage Ideal Diode Controller with Monitoring	N-Channel, 0V to 18V, UV, 0V, MSOP-12 and DFN-12 Packages
LTC4353	Dual Low Voltage Ideal Diode Controller	Dual N-Channel, 0V to 18V, MSOP-16 and DFN-16 Packages
LTC4354	Negative Voltage Diode-OR Controller and Monitor	Controls Two N-Channel MOSFETs, 1µs Turn-Off, –80V Operation
LTC4355	Positive Voltage Diode-OR Controller and Monitor	Controls Two N-Channel MOSFETs, 0.5µs Turn-Off, 9V to 80V Operation
LTC4357	Positive High Voltage Ideal Diode Controller	Controls Single N-Channel MOSFETs, 0.5µs Turn-Off, 9V to 80V Operation
LTC4358	5A Ideal Diode	Positive Voltage Ideal Diode with Integrated MOSFET, 9V to 26.5V Operation
LTC4359	Ideal Diode Controller with Reverse Input Protection	N-Channel, 4V to 80V, MSOP-8 and DFN-6 Packages
LTC4370	2-Supply Diode-OR Current Balancing Controller	Dual N-Channel, 0V to 18V, MSOP-16 and DFN-16 Packages
LTC4415	Dual 4A ideal Diodes with Adjustable Current Limit	1.7V to 5.5V Operating Range

