AM2837
Motor Driver ICs

One Channel H-Bridge Motor Driver AM2837

- Features and Benefits
- Wide supply voltage range up to 13.5 V
- Maximum continuous current output up to 3.5A
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ for high efficient H -bridge output.
- SOP-8 package for small size PCB layout
- Over temperature protection
- Over current protection
- Low standby current
- Low quiescent current
- Application
- Small Appliances
- Toy (R/C car)
- DC Brushed Motor Drive

- Description

The AM2837 is a channel H-Bridge driver IC, It provides integrated motor-driver solution for robotics, consumer products and battery-powered motion control applications. The output driver block consists of N -channel and P-channel power MOSFETs configured as an H -bridge to drive DC motor.

AM2837 maximum operational voltage is 13.5 V . It can supply up to 3.5 A of continuous output current. There are internal shutdown functions for over-temperature protection and over-current protection (IOCP = 6.0 A).

Package material is Pb-Free Product \& RoHS compliant for the purpose of environmental protection and for sustainable development of the Earth.

- Ordering Information

Orderable Part Number	Package	Marking
AM2837	SOP-8	AM2837

AM2837
Motor Driver ICs

- Absolute Maximum Ratings ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power Supply Voltage	VCC	15	V
Output Continuous Current	$\mathrm{I}_{\text {cont }}$	$3.5($ NOTE*	A
Output peak current	Iomax	6	A
Operate Temperature Range	$\mathrm{T}_{\text {opr }}$	$-20 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$-40 \sim+150$	${ }^{\circ} \mathrm{C}$

Note *: Based on $20 \times 20 \mathrm{~mm}^{2}$ FR4 PCB (1 oz.) at single side PCB

- Recommended Operating Conditions ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)
(Set the power supply voltage taking allowable dissipation into considering)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power Supply Voltage	VCC	2.7		13.5	V
Signal Input I_{N} _A and IN_B Voltage	$\mathrm{V}_{\mathbb{N} _\times}$	-0.3		6^{*}	V
H-Bridge Output Continuous Current	$\mathrm{I}_{\text {OUT }}$	0	$3.5\left(\right.$ Note**) *	A	
Externally Applied PWM Frequency	$\mathrm{F}_{\mathbb{N} _\times}$		50	KHz	

Note*: Input signal voltage is not higher VCC voltage.
Note**: Based on $20 \times 20 \mathrm{~mm}^{2}$ FR4 PCB (1 oz.) at single side PCB

- Electrical Characteristics (Unless otherwise specified, $\mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{VCC}=6 \mathrm{~V}$)

Parameter	Symbol	Limit			Unit	Conditions
		Min.	Typ.	Max.		
Power Supplies						
Supply Current	Icc		4		mA	Input signal $\mathrm{IN} _\mathrm{A} / \mathrm{B}=\mathrm{L} / \mathrm{H}$ or H/L or H/H No load on OUT_A/B,
Standby Current	$I_{\text {stB }}$			1	uA	Input signal IN_A/B= L/L
IN_X Inputs						
Input H level Voltage	$\mathrm{V}_{\text {IN_XH }}$	2.0		6	V	
Input L level Voltage	$\mathrm{V}_{\text {IN_xL }}$	-0.3		0.7	V	
Input H level Current	lin_x		100		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\text {IV }}=3 \mathrm{~V}$
Input Frequency	Fin_x			50	KHz	
Input Pull Down Resistance	$\mathrm{R}_{\text {IN_X }}$		30		K Ω	
H-bridge FETs						
On-Resistance	$\mathrm{R}_{\mathrm{ds}(\mathrm{n})}$		85		$\mathrm{m} \Omega$	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$ Upper and Lower total
On-Resistance	$\mathrm{R}_{\mathrm{ds}(0 \mathrm{n})}$		95		$\mathrm{m} \Omega$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=3 \mathrm{~A} \\ & \text { Upper and Lower total } \end{aligned}$
TSD Protections						
Thermal Shutdown Protection	TSD ${ }_{p}$		160		${ }^{\circ} \mathrm{C}$	
Thermal Shutdown Release	TSD ${ }_{\text {r }}$		110		${ }^{\circ} \mathrm{C}$	

- Block Diagram

- Input Logic Descriptions

Function Truth Table

IN_A	IN_B	OUT_A	OUT_B	Mode
L	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Stop
L	H	L	H	Reverse
H	L	H	L	Forward
H	H	L	L	Brake

- Pin configuration SOP-8

Top View

- Pin Descriptions

PIN No.	Pin Name	I/O	
1	IN_A	I	Input Half Bridge A
2	IN_B	I	Input Half Bridge B
3	GND	I	Ground Pin
4	VCC	I	Power Supply
5	OUT_B	O	Output Half Bridge B
6	OUT_B	O	Output Half Bridge B
7	OUT_A	O	Output Half Bridge A
8	OUT_A	O	Output Half Bridge A

- Application:

- Circuit Descriptions

The function descriptions of capacitors on the application circuit:

1. C1, C2: Power supply VCC pin capacitor:
1) The capacitor can reduce the power spike when the motor is in motion. To avoid the IC directly damaged by the VCC peak voltage. It also can stabilize the power supply voltage and reduce its ripples.
2) The C1 capacitor can compensate power when motor starts running.
3) The capacitor value $(\mu \mathrm{F})$ determines the stability of the VCC during motor in motion. If the large voltage power or a heavy loading motor is used, then a larger capacitor would be needed.
4) On the PCB configuration, the C1, C2 must be mounted as close as possible to VCC pin .
2. C4: The across-motor capacitor
1) The C 4 capacitors can reduce the power spike when motor is running. $0.1 \mu \mathrm{~F}$ capacitor is recommended.
2) The C 4 capacitor must be added to the general application.
3. It's not allowed INA, INB input remain floating status, because there is a minor leakage current between P-N junction when temperature rising, the leakage current will go through internal pull- low resistor which causes INA or INB floating level abnormal pull high and output abnormal working.

- Operating Mode Descriptions

H-Bridge basic operating mode :
a) Forward mode

Definition : When IN_A=H, IN_B=L, then OUT_A=H, OUT_B=L
b) Reverse mode

Definition : When IN_A=L, IN_B=H, then OUT_A=L, OUT_B=H
c) Brake mode

Definition: When $I N _A=I N _B=H$, then $O U T _A=O U T _B=L$
d) Stop mode

Definition: When $I N _A=I N _B=L$, then $O U T _A=O U T _B=H i-Z$

- Protection Mechanisms Descriptions

1) Over-current protection (OCP)

When the IC conducts a large current, 6A (Typ), the internal over-current protection function will be triggered.
The device enter protection mode of auto-recover to avoid damaging IC and system.
2) Over-temperature protection

If the IC junction temperature exceeds $160^{\circ} \mathrm{C}$ (Typ.), the internal over-temperature protection function will be triggered, partial FETs in the H-bridge are disabled, that will ensure the safety of customers' products. If the IC junction temperature falls to $110^{\circ} \mathrm{C}$ (Typ.), the IC resumes automatically.

- Packaging outline --- SOP-8

Unit : mm

SYMBOL	MILLIMETERS		INCHES	
	Min.	Max.	Min.	Max.
A	--	1.75	--	0.069
A1	0.10	0.225	0.004	0.009
A2	1.30	1.50	0.051	0.059
A3	0.60	0.70	0.024	0.028
b	0.39	0.48	0.015	0.019
c	0.21	0.26	0.008	0.010
D	4.70	5.10	0.185	0.201
E	5.80	6.20	0.228	0.244
E1	3.70	4.10	0.146	0.161
e	1.27 TYP.$$		0.05 TYP.	
h	0.25	0.50	0.010	0.020
L	0.50	0.80	0.020	0.031
L1	1.05 TYP		0.041 TYP.$$	

Marking Identification

NOTE:
Row1 : Logo
Row2 : Device Name
Row3 : Wafer Lot No use five codes + Assembly Year use one code + Assembly Week use two codes

Example: Wafer Lot No is EB168 + Year 2017 is $\underline{H}+$ Week 08 is $\underline{08}$, then mark "EB168H08"
The last code of assembly year, explanation as below: :
(Year: $A=0, B=1, C=2, D=3, E=4, F=5, G=6, H=7, I=8, J=9$. For example: year 2017=H)

