
CH376 Datasheet (I) http://wch.cn 1

USB Flash Disk and SD Card File Management Control Chip

CH376
Datasheet

Version: 1A
http://wch.cn

1. Overview
CH376 is a file management control chip, which is used for MCU system to read and write files in USB
flash disk or SD card.

CH376 supports USB device mode and USB host mode, has the basic firmware of the USB communication
protocol, the firmware for processing the special communication protocol of Mass-Storage device, the SD
card communication interface firmware and the management firmware of FAT16 and FAT32 and FAT12 file
systems, and supports the common USB storage devices (including USB flash disk/USB hard disk, USB
flash drive/USB card reader) and SD card (including standard capacity SD card and high capacity HC-SD
card as well as protocol compatible MMC card and TF card).

CH376 supports three communication interfaces: 8-bit parallel port, SPI interface or asynchronous serial
interface. Controllers such as DSP/MCU/MPU can control CH376 through any of the above communication
interfaces, access files in USB flash disk or SD card or communicate with the computer.

The USB device mode of CH376 is fully compatible with CH372, and the USB host mode of CH376 is
basically compatible with CH375.

The figure below is an application block diagram of CH376.

2. Features
● Support 1.5Mbps low-speed and 12Mbps full-speed USB communication, compatible with USB V2.0;

only crystals and capacitors are required for peripheral components.

Computer or
USB device
For example:

USB flash
drive

USB flash
disk/card

reader
USB printer

USB keyboard
USB mouse

CH376

Local
Controller

DSP
MCU
MPU
etc.

8 bits

Passive
Parallel

port

USB-PhyI/O D0-D7

A0
RD#
WR#
PCS#

Parallel bus

D+
D-

USB bus

USB-Device

USB-Host

File System
Management

firmware
SPI
The

equipment
starts

Interface

SCS
SCK

MOSI => SDI
MISO <=

SDO

USB

ROM RAM

SD card and
Protocol

compatible
card

For example:
MMC card

Mini-SD card
TF card

High-speed
MCU

SDCS
SDCK
SDDO
SDDI

SPI interface

Asynchro
nous

Serial port

SD card
interface
SPI Host

TXD => RXD
RXD <= TXD
Serial UART

INT#

http://wch.cn
http://wch.cn

CH376 Datasheet (I) http://wch.cn 2

● Support USB-HOST interface and USB-Device interface, and support dynamic mode switching
between HOST and DEVICE.

● Support USB device control transmission, bulk transmission and interrupt transmission.
● Automatically detecting the connection and disconnection of USB device, and providing event

notifications for device connection and disconnection.
● Provide 6MHz SPI host interface, and support SD card as well as MMC card and TF card compatible

with its protocol.
● Built-in USB control transmission protocol processor simplifies common control transmission.
● The built-in firmware processes special communication protocols for mass storage devices, and

supports BULk-Only transport protocol and USB storage devices (including USB flash disk/USB hard
disk/USB flash drive/USB card reader) with SCSI, UFI, RBC or equivalent command sets.

● The management firmware with FAT16, FAT32 and FAT12 file systems supports 32GB USB flash disk
and SD card.

● Provide file management functions: open, create or delete files, enumerate and search files, create
subdirectories, and support long filenames.

● Provide file read-write function: read and write files in the multi-level subdirectories in bytes or
sectors.

● Provide the disk management function: initialize the disk, inquire the physical capacity, inquire the
free space, read and write physical sectors.

● Provide a 2MB 8-bit passive parallel interface and support the parallel data bus connected to MCU.
● Provide 2MB/24MHz SPI device interface, and support SPI serial bus connected to MCU.
● Provide the asynchronous serial interface with the maximum speed of 3Mbps, support the serial port

connected to MCU, and support the dynamic adjustment of communication baud rate.
● Support supply voltage of 5V, 3.3V and 3V as well as low power mode.
● The USB device mode is fully compatible with CH372; the USB host mode is basically compatible

with CH375 chip.
● Provide SOP-28 and SSOP20 lead-free package, be compatible with RoHS, provide SOP28 to DIP28

conversion board, and SOP28 package pin is basically compatible with CH375.

3. Package

Package Width of Plastic Pitch of Pin Instruction of
Package

Ordering
Information

SOP-28 7.62mm 300mil 1.27mm 50mil
Standard 28-pin

patch
CH376S

SSOP-20 5.30mm 209mil 0.65mm 25mil Ultra-small 20-pin
patch

CH376T

http://wch.cn

CH376 Datasheet (I) http://wch.cn 3

4. Pins
CH376S
Pin No.

CH376T
Pin No.

Pin
Name Pin Type Description

28 20 VCC Power
Positive power input, an external 0.1uF power decoupling

capacitor is required.

12 10 GND Power Common ground, shall be connected to the ground wire of the
USB bus

9 7 V3 Power

Connected to the VCC input external power at the supply
voltage of 3.3V

Connected to an external 0.01uF decoupling capacitor at 5V
supply voltage

13 11 XI Input
Input terminal of the crystal oscillator, required to be externally

connected to a 12MHz crystal

14 12 XO Output
Inverted output terminal of crystal oscillator, required to be

externally connected to a 12MHz crystal
10 8 UD+ USB signal USB bus D+data line
11 9 UD- USB signal USB bus D - data cable

23 17 SD_CS Open-drain
output

Chip selection output of SD card SPI interface, active at low
level, built-in pull-up resistor

26 19 SD_CK Output Serial clock output of SD card SPI interface

7 6 SD_DI Input
Serial data input of SD card SPI interface, built-in pull-up

resistor

25 18 SD_DO Output Serial data output of SD card SPI interface

25 18 RST Output
Power-on rest output and external reset output before entering

SD card mode, active high

22～15 None D7～
D0

Bi-directional
three-state

8-bit bidirectional data bus on parallel port, built-in pull-up
resistor

18 13 SCS Input
Chip selection input of SPI interface, active low, built-in

pull-up resistor
20 14 SCK Input Serial clock input of SPI interface, built-in pull-up resistor
21 15 SDI Input Serial data input of SPI interface, built-in pull-up resistor

22 16 SDO
Three-status

output Serial data output of SPI interface

19 None BZ Output Busy status output of SPI interface, active at high level

8 None A0 Input

Address input of parallel port, distinctive command port and
data port, built-in pull-up resistor,

Write commands or read statuses when A0=1; write and read
data when A0=0

27 None PCS# Input
Chip selection control input of parallel port, active at low level,

built-in pull-up resistor

4 None RD# Input Read strobe input of parallel port, active at low level, built-in
pull-up resistor

3 None WR# Input
Write strobe input of parallel port, active at low level, built-in

pull-up resistor

http://wch.cn

CH376 Datasheet (I) http://wch.cn 4

None 3 SPI# Input Interface configuration input during chip internal reset, built-in
pull-up resistor

5 4 TXD
Input

Output

Interface configuration input during chip internal reset, built-in
pull-up resistor,

Serial data output of asynchronous serial interface after chip
reset

6 5 RXD Input
Serial data input of asynchronous serial interface, built-in

pull-up resistor

1 1 INT# Output
Interrupt request output, active at low level, built-in pull-up

resistor

24 None ACT# Open-drain
output

Status output, active at low level, built-in pull-up resistor.
USB device is being connected to the status output in the USB

host mode;
SD card SPI communication success status output in the SD

card host mode;
USB device configuration completes the status output in the

USB device mode with built-in firmware

2 2 RSTI Input
External reset input, active at low level, built-in pull-down

resistor

5. Commands
For the data in this datasheet, the suffix B is a binary number, and the suffix H is a hexadecimal number.
Otherwise, it is a decimal number.

Double-word data (32 bits in total) with low bytes in the front (Little-Endian) refers to: the lowest byte (bits
7 to 0), followed by the lower byte (bits 15 to 8), followed by the higher byte (bits 23 to 16), followed by the
highest byte (bits 31 to 24).

Data stream is a data block consisting of several consecutive bytes with a total length of at least 0 and at
most 255.

The number in the brackets for the input data and output data in the following table is the number of bytes of
the parameter. If there are no brackets, it will be 1 byte by default.

MCU referred to in this datasheet is basically applicable to DSP or MCU/MPU/SCM, etc.

USB flash disk referred to in this datasheet includes USB flash disk, USB external hard disk, USB flash
drive, USB card reader, etc.

SD card referred to in this datasheet includes SD card, MMC card, HC-SD card (high-capacity SD card), TF
card, etc.

This datasheet mainly provides commonly used file management control commands for USB flash disk and
SD card. Refer to datasheet CH376DS2 (II).PDF for some less commonly used auxiliary commands and
commands for performing USB basic transactions and control transmission.

CH376 contains all the functions of CH372 chip. This datasheet does not provide the description of CH376
in USB device mode. For related information, refer to datasheet CH372DS1.PDF.

Code
Command name

CMD_
Input data Output data Command purpose

01H GET_IC_VER Version Get the chip and firmware versions

http://wch.cn

CH376 Datasheet (I) http://wch.cn 5

02H SET_BAUDRATE

Frequency division
coefficient (Wait for 1mS)

Operation status
Set serial communication baud rate

Frequency division
constant

03H ENTER_SLEEP Enter the low-power sleep suspend state
05H RESET_ALL (Wait for 35mS) Execute hardware reset

06H CHECK_EXIST Any data Bitwise NOT Test the communication interface and
operation status

0BH SET_SDO_INT
Data 16H Set the interrupt mode for SDO pin of

SPI Interrupt mode
0CH GET_FILE_SIZE Data 68H File length (4) Get the current file length

15H SET_USB_MODE Mode code
(Wait for 10uS)
Operation status

Set USB working mode

22H GET_STATUS Interrupt status
Get the interrupt status and cancel the

interrupt request

27H RD_USB_DATA0

Data Length Read the data block from the endpoint
buffer of the current USB interrupt or
 from the receive buffer of the host

endpoint
Data stream (n)

2CH WR_HOST_DATA
Data Length

 Write the data block to the transmit
buffer of the USB host endpoint Data stream (n)

2DH WR_REQ_DATA
 Data Length Write the requested data block to the

internal specified buffer Data stream (n)

2EH WR_OFS_DATA
Offset address

Write the data block to the specified
offset address of the internal buffer

Data Length
Data stream (n)

2FH SET_FILE_NAME
Character string

(n)
Set the filename of the file to be

operated

30H DISK_CONNECT Generate
interrupt

Check whether the disk is connected

31H DISK_MOUNT
Generate
interrupt

Initialize the disk and test whether the
disk is ready

32H FILE_OPEN Generate
interrupt

Open files or directories, enumerate
files and directories

33H FILE_ENUM_GO
Generate
interrupt

Continue enumerating files and
directories

34H FILE_CREATE Generate
interrupt

New File

35H FILE_ERASE
Generate
interrupt

Delete File

36H FILE_CLOSE
Whether update is

allowed
Generate
interrupt

Close the currently opened file or
directory

37H DIR_INFO_READ Directory index
number

Generate
interrupt

Read the directory information for the
file

38H DIR_INFO_SAVE
Generate
interrupt

Save the directory information for the
file

http://wch.cn

CH376 Datasheet (I) http://wch.cn 6

39H BYTE_LOCATE Number of offset
bytes (4)

Generate
interrupt

Move the current file pointer in bytes

3AH BYTE_READ
Number of bytes

requested (2)
Generate
interrupt

Read data blocks from the current
location in bytes

3BH BYTE_RD_GO Generate
interrupt

Continue byte read

3CH BYTE_WRITE
Number of bytes

requested (2)
Generate
interrupt

Write data blocks to the current location
in bytes

3DH BYTE_WR_GO Generate
interrupt

Continue byte write

3EH DISK_CAPACITY
Generate
interrupt

Inquire the physical capacity of the disk

3FH DISK_QUERY
Generate
interrupt

Inquire the space information of the
disk

40H DIR_CREATE Generate
interrupt

Create a new directory and open it or
open an existing directory

4AH SEC_LOCATE
Number of offset

sectors (4)
Generate
interrupt Move the current file pointer in sectors

4BH SEC_READ Number of
requested sectors

Generate
interrupt

Read data blocks from the current
location in sectors

4CH SEC_WRITE
Number of

requested sectors
Generate
interrupt

Write data blocks to the current location
in sectors

50H DISK_BOC_CMD
Generate
interrupt

Execute BO transport protocol
commands on USB memory

54H DISK_READ
LBA sector
address (4) Generate

interrupt
Read physical sectors from USB

memory
Number of sectors

55H DISK_RD_GO Generate
interrupt

Continue the physical sector read
operation of the USB memory

56H DISK_WRITE
LBA sector
address (4) Generate

interrupt
Write physical sectors to USB memory

Number of sectors

57H DISK_WR_GO
Generate
interrupt

Continue the physical sector write
operation of the USB memory

If the output data of the command is the operation status, refer to the following table.

Status code Status name Status description
51H CMD_RET_SUCCESS Operated Successfully
5FH CMD_RET_ABORT Operation failure

It usually takes time to execute the commands marked as “generate interrupt”. CH376 requests an interrupt
from MCU after the command is executed. MCU can read the interrupt status as the operation status of the
command. If the interrupt status is USB_INT_SUCCESS, the operation will be successful. Some commands
have return data (refer to CH376_CMD_DATA structure in the file CH376INC.H), and the returned data can
be read through the command CMD_RD_USB_DATA0.

5.1. CMD_GET_IC_VER
This command is used to get the chip and firmware versions. One byte of data returned is the version number,

http://wch.cn

CH376 Datasheet (I) http://wch.cn 7

the bit 7 is 0, the bit 6 is 1, and the bits 5-0 are the version number. If the returned value is 41H, remove bits
7 and 6, and the version number will be 01H.

5.2. CMD_SET_BAUDRATE
This command is used to set the baud rate of CH376 for serial communication. When CH376 works in serial
communication mode, the default communication baud rate is set by the level combination of BZ/D4,
SCK/D5 and SDI/D6 pins (refer to Section 6.4 of this datasheet) after reset. When these pins are suspended,
the baud rate is 9600bps by default. If MCU supports high communication speed, the serial communication
baud rate can be dynamically regulated through this command. The command requires the input of two data,
namely, baud rate frequency division coefficient and frequency division constant. The following table shows
the relationship with the baud rate.

Frequency division
coefficient

Frequency
division constant Serial communication baud rate (bps) Error

02H B2H 9600 0.16%
02H D9H 19200 0.16%
03H 98H 57600 0.16%
03H CCH 115200 0.16%
03H F3H 460800 0.16%
07H F3H 921600 0.16%
03H C4H 100000 0%
03H FAH 1000000 0%
03H FEH 3000000 0%
02H Constant Calculation formula: 750000/(256- constant)
03H Constant Calculation formula: 6000000/(256- constant)

Usually, the serial port communication baud rate is set within 1mS. After completion, CH376 outputs the
operation state at the newly set communication baud rate. Therefore, MCU shall adjust its own
communication baud rate in time after sending the command.

5.3. CMD_ENTER_SLEEP
This command enables CH376 in a low-power sleep suspended state. After entering the low power state, the
clock of CH376 stops vibrating, thus saving power. The low power state is not quitted until one of the
following two situations is detected: first, the signal is detected on the USB bus (such as the USB host
starting transmission or USB device plugging event). Second, MCU writes new commands to CH376
(commands without input data, such as CMD_GET_IC_VER or CMD_ABORT_NAK). For SPI interface
communication interface mode, active SCS chip selection will also cause CH376 to exit the low-power state,
so MCU shall immediately disable the SCS chip selection after sending the command
CMD_ENTER_SLEEP.

Typically, it takes several milliseconds for CH376 to exit the low-power state and return to normal operation.
When fully restored to normal operation, CH376 will generate the event interrupt USB_INT_WAKE_UP.

5.4. CMD_RESET_ALL
This command enables CH376 to perform a hardware reset. Typically, hardware reset is completed within
35mS. In the parallel communication mode, hardware reset is generally completed within 1mS.

5.5. CMD_CHECK_EXIST
This command is used to test the communication interface and working state to check whether CH376 is
working properly. This command needs to input 1 data, which can be any data. If CH376 is working properly,
the output data of CH376 will be the bitwise reverse of the input data. For example, if the input data is 57H,

http://wch.cn

CH376 Datasheet (I) http://wch.cn 8

the output data will be A8H. In addition, CH376 with parallel communication mode normally reads the data
00H from its parallel port before receiving no command after its reset.

5.6. CMD_SET_SDO_INT
This command is used to set the interrupt mode for SDO pin of SPI interface. The command requires to first
input one data 16H, and then input one new interrupt mode. There are two interrupt modes: 10H disable
SDO pin is used for interrupt output, and the three-state output is disabled when the SCS chip selection is
invalid, so as to share the SPI bus of MCU with other devices; 90H set SDO pin is always in the output state.
When the SCS chip selection is invalid, it serves as the interrupt request output, which is equivalent to the
INT# pin for MCU to query the interrupt request status.

5.7. CMD_GET_FILE_SIZE
This command is used to get the length of the current file, namely the number of bytes. The command
requires to input one data 68H and output the length of the file currently being opened, which is a
double-word data (32 bits) expressed by 4 bytes with low bytes in front.

To set the new file length, refer to the command CMD_WRITE_VAR32 in Datasheet (II) to set the variable
VAR_FILE_SIZE.

5.8. CMD_SET_FILE_SIZE
This command is used to set the length of the current file, namely the number of bytes. The command
requires to input one data 68H and then a new file length, which is a double-word data (32 bits) expressed by
4 bytes with low bytes in front.

This command is only used to modify the file length variable in CH376 memory. Only after the commands
like CMD_FILE_CLOSE are executed, the file length in the USB storage device or SD card can be actually
updated.

5.9. CMD_SET_USB_MODE
This command is used to set USB working mode. This command needs to input 1 data, which is a mode
code:

Switch to the disabled USB device mode (default mode after power-on or reset) when the mode code is
00H;
Switch to the enabled USB device mode and external firmware mode (serial connection mode is not
supported) when the mode code is 01H;
Switch to the enabled USB device mode and built-in firmware mode when the mode code is 02H;
Switch to the SD card host mode to manage and access files in the SD card when the mode code is 03H;
Switch to the disabled USB host mode when the mode code is 04H;
Switch to the enabled USB host mode when the mode code is 05H, not generating SOF package;
Switch to the enabled USB host mode when the mode code is 06H, automatically generating SOF
package;
Switch to the enabled USB host mode when the mode code is 07H, resetting USB bus;

Please refer to CH372 Datasheet for USB device mode. The USB device mode of CH376 is fully compatible
with CH372 chip.

In USB host mode, "Not enabled" means that whether the USB device is connected is not automatically
detected, so the external MCU shall detect; "Enabled" means that whether the USB device is connected is
automatically detected. When the USB device is connected or disconnected, an interrupt will be generated to
notify the external MCU. After switching to the mode code 06H, CH376 will automatically periodically
generate a USB frame cycle SOF packet to be sent to a connected USB device. The mode code 07H is
usually used to provide a USB bus reset state to a connected USB device, and the USB bus reset will not end

http://wch.cn

CH376 Datasheet (I) http://wch.cn 9

until it is switched to other working mode. It is recommended to use mode 5 when there is no USB device.
After the USB device is plugged, enter mode 7 first and then switch to mode 6.

Usually, the USB working mode is set within 10uS, and the operation status is output after completion.

5.10. CMD_GET_STATUS
This command is used to get the interrupt status of CH376 and notify CH376 to cancel the interrupt request.
After CH376 requests an interrupt from MCU, MCU gets the interrupt status through the command, analyzes
the interrupt cause and processes.

Interrupt status
byte Classification of interrupt status

00H～0FH
Please refer to CH372 Datasheet for the interrupt status in USB device

mode.
10H～1FH Operation interrupt status in SD card or USB host mode

20H～3FH
Communication failure status in USB host mode, used to analyze the cause

of operation failure
40H～4FH File system warning codes in SD card or USB host file mode
80H～BFH File system error codes in SD card or USB host file mode

The following table shows operation interrupt statuses in SD card or USB host mode.

Status
byte

Status name Analysis and description of interrupt status

14H USB_INT_SUCCESS SD card or USB transaction or transmission operation
or file operation is successful

15H USB_INT_CONNECT A USB device connection event is detected
16H USB_INT_DISCONNECT A USB device disconnection event is detected

17H USB_INT_BUF_OVER The transmitted data is wrong or the buffer overflows
due to too many data

18H USB_INT_USB_READY
USB device has been initialized (USB address has been

assigned)

1DH USB_INT_DISK_READ Storage device performs read operation, and requests
data read

1EH USB_INT_DISK_WRITE
Storage device performs write operation, and requests

data write
1FH USB_INT_DISK_ERR Storage device operation failed

The following table shows communication failure statuses in USB host mode, which are generally used to
analyze the cause of operation failure.

Interrupt status
byte Name Analysis and description of interrupt status

Bits 7-6 (Reserved bit) Always 00

Bit 5 (Flag bit)
Always 1, indicating that this status is the operation failure

status

Bit 4
IN transaction

Sync flag

For IN transactions, if the bit is 0,
data packets currently received are out of sync and the data

may be invalid
Bits 3-0 Returned value 1010 = Device returns NAK

http://wch.cn

CH376 Datasheet (I) http://wch.cn 10

of USB device
that causes

operation failure

1110 = Device returns STALL
XX00 = Device returns timeout. The device did not return

Other value is PID returned by the device

The following table shows file system warning codes and error codes in SD card or USB host file mode.

Status
byte Status name Analysis and description of interrupt status

41H ERR_OPEN_DIR The directory of the specified path is opened

42H ERR_MISS_FILE
The file of the specified path is not found. It may be a

file name error

43H ERR_FOUND_NAME
The matched filename is searched,

or a directory is required to be opened but a file is
opened actually

82H ERR_DISK_DISCON The disk is not connected. It may have been disconnected

84H ERR_LARGE_SECTOR
The sector of the disk is too large, and only 512 bytes is

supported per sector

92H ERR_TYPE_ERROR
The disk partition type is not supported. The disk shall be

repartitioned by the disk management tool

A1H ERR_BPB_ERROR
The disk is not formatted, or the parameter is wrong,
The disk shall be reformatted by WINDOWS using

default parameters

B1H ERR_DISK_FULL The disk is full of files, there is too little free space or
there is no free space

B2H ERR_FDT_OVER

There are too many files in the directory, and there are no
free directory entries. It is necessary to manage the disk,

The number of files in the root directory of
FAT12/FAT16 shall be less than 512

B4H ERR_FILE_CLOSE
The file has been closed. If it is required to be used,

reopen it

5.11. CMD_RD_USB_DATA0
This command is used to read the data block from the endpoint buffer of the current USB interrupt or from
the receive buffer of the host endpoint. The output data firstly read is data block length, namely, the number
of bytes of subsequent data streams. The effective value of the data block length is 0 to 255. For USB
underlying transport, the data block length is 0 to 64. If the length is not 0, MCU must read the subsequent
data one by one from CH376.

5.12. CMD_WR_HOST_DATA
This command is used to write data blocks to the send buffer of the USB host endpoint. The input data firstly
written is data block length, namely, the number of bytes of subsequent data streams. The effective value of
the data block length is 0 to 64. If the length is not 0, MCU must write the subsequent data one by one to
CH376.

5.13. CMD_WR_REQ_DATA
This command is used to write the data block requested by CH376 to the internal specified buffer. The
output data firstly read is data block length, namely, the number of bytes of subsequent data streams that
CH376 requests MCU to write. The effective value of the data block length is 0 to 255. For USB underlying
transport, the data block length is 0 to 64. If the length is not 0, MCU must write the subsequent data one by

http://wch.cn

CH376 Datasheet (I) http://wch.cn 11

one to CH376.

5.14. CMD_WR_OFS_DATA
This command is used to write the data block to the specified offset address of the internal buffer. The input
data firstly written is the offset address (the internal buffer start address plus the offset address gives the start
address for writing the command block), and the input data written later is the data block length, namely, the
number of bytes of subsequent streams. The effective value of the data block length is 0 to 32, and the sum
of offset address and data block length shall not be more than 32. If the data block length is not 0, MCU
must write the subsequent data one by one to CH376.

5.15. CMD_SET_FILE_NAME
This command is used to set the filename of the file or directory (folder) to be operated or the directory name
(pathname). The input data is a string ending in 0, and the length must not exceed 14 characters, including
the ending character 0. For files under multi-level subdirectories, the whole path can be decomposed into
multiple subdirectory names and a file name to set the name several times and open step by step from the
root directory. When the file operation is wrong, it is necessary to return to the root directory to reopen step
by step.

Filenames (or directory names, or pathnames) are in the same format as short filenames on DOS systems,
but do not require drive letter or colon. As root directory descriptors, the left slash "/" and the right slash "\"
are equivalent, and the left slash "/" is recommended. All characters must be uppercase, numeric, or Chinese
characters, and some special characters. The length of filename shall not be more than 11 characters. The
length of primary filename shall not be more than 8 characters, the length of extension shall not be more than
3 characters. If there is an extension, it shall be the separated from the primary filename by the decimal point.
Refer to EXAM11 to support long filenames.

When there is no character in the string (but there is an ending character 0, the same below), it indicates that
the file system is initialized and any file is not opened;

When there is only one "/" or "\" (left slash or right slash) in the string, the root directory will be opened;

If the first character of the string is "/" or "\" and the following character is the filename, it will be the file
under the root directory.

When the string is directly a filename, it indicates that the file is in the current directory.

For example, FILENAME.EXT file under the root directory can be set with the string “/FILENAME.EXT\0”.
The entire string has a total of 14 characters including ending character, in which "\0" is 0 expressed in C
language and used as the ending character of the string, "/" expresses the root directory, and "\\" (actually one
"\" character) can also express the root directory in C language.

For example, the file \YEAR2004\MONTH05.NEW\DATE18\ADC.TXT with a long path under the
three-level subdirectory, can be opened by the following steps:
① After setting the filename (directory name) with the string "/YEAR2004\0", open the first-level

subdirectory with CMD_FILE_OPEN;
② After setting the filename (directory name) with the string “MONTH05.NEW\0”, open the

second-level subdirectory with CMD_FILE_OPEN;
③ After setting the filename (directory name) with the string “DATE18\0”, open the third-level

subdirectory with CMD_FILE_OPEN;
④ After setting the filename with the string “ADC.TXT\0”, open the final file with

CMD_FILE_OPEN;

5.16. CMD_DISK_CONNECT

http://wch.cn

CH376 Datasheet (I) http://wch.cn 12

This command is used to check whether the disk is connected and does not support SD card. In the USB host
mode, this command can inquire whether the disk is connected at any time, and CH376 requests an interrupt
to MCU after the command is executed. If the operation status is USB_INT_SUCCESS, there will be a disk
or USB device connected.

5.17. CMD_DISK_MOUNT
This command is used to initialize the disk and test whether the disk is ready. The newly connected USB
storage device or SD card must be initialized through this command before file operation. Some USB
storage devices may return the successful operation status USB_INT_SUCCESS after being initialized for
several times. In addition, the command can also be used to test whether the disk is ready at any time during
file operation.

If the interrupt status is USB_INT_SUCCESS when the command CMD_DISK_MOUNT is executed, the
data can be gotten through the command CMD_RD_USB_DATA0. The data is usually 36 bytes, including
the features of USB storage device and the identification information of manufacturer and product.

5.18. CMD_FILE_OPEN
This command is used to open files or directories (folders) and enumerate files and directories (folders).

Opening a file (or directory) is a necessary operation before reading or writing a file (or directory). Before
opening the file command, set the filename of the file to be opened or enumerated through the command
CMD_SET_FILE_NAME.

If the file is under the multi-level subdirectories, and the pathname is long, it can be opened from the root
directory several times level by level. First open the first-level subdirectory, then the second-level
subdirectory, until finally open the file. The first opening must start from the root directory, so the first
character of the pathname must be a slash "/" or "\". Later, the first character must not be "/" or "\" when it is
opened again followed by the previous level.

If the directory is opened successfully, the interrupt status ERR_OPEN_DIR will be returned. At this point,
the file length is invalid, being 0FFFFFFFFH.

If the file is opened successfully, the interrupt status USB_INT_SUCCESS will be returned. At this point,
the file length is valid.

If the specified file or directory (folder) is not found, the interrupt status ERR_MISS_FILE will be returned.

For example:
To open the file \TODAY1.TXT in the root directory, the steps are as follows:
① Set the filename with the string “/TODAY1.TXT\0” through the command

CMD_SET_FILE_NAME;
② Open the file with the command CMD_FILE_OPEN.

To open the file \YEAR2004\MONTH05.NEW\DATE18\ADC.TXT under the three-level subdirectory,
the steps are as follows:

① Set the subdirectory name with the string “/YEAR2004\0” through the command
CMD_SET_FILE_NAME;

② Open the first-level subdirectory with the command CMD_FILE_OPEN. If the command
CMD_GET_FILE_SIZE is executed after the directory is opened, the invalid file length
0FFFFFFFFH will be returned;

③ Set the subdirectory name with the string “MONTH05.NEW\0” through the command
CMD_SET_FILE_NAME;

④ Open the second-level subdirectory with the command CMD_FILE_OPEN;
⑤ Set the subdirectory name with the string “DATE18\0” through the command

http://wch.cn

CH376 Datasheet (I) http://wch.cn 13

CMD_SET_FILE_NAME;
⑥ Open the third-level directory with the command CMD_FILE_OPEN.
⑦ Set the filename with the string “ADC.TXT\0” through the command

CMD_SET_FILE_NAME;
⑧ Open the final file with the command CMD_FILE_OPEN. If the command

CMD_GET_FILE_SIZE is executed after the directory is opened, the actual file length will be
returned.

To initialize the file system without opening any files, the steps are as follows:
① Set the filename with the string “\0” through the command CMD_SET_FILE_NAME;
② Execute the command CMD_FILE_OPEN, and then the file system will be initialized (return

directly if it has been already initialized).

To open the root directory (for example, when processing a long filename), the steps are as follows:
① Set the filename with the string “/\0” through the command CMD_SET_FILE_NAME;
② Execute the command CMD_FILE_OPEN, and then the root directory will be opened (it must

be closed through CMD_FILE_CLOSE after use).

5.19. CMD_FILE_ENUM_GO
This command is used to continue enumerating files and directories (folders).

To search and inquire files, the steps are as follows:
① Replace all or part of the filename characters to be inquired with the wildcard character *. No

characters are allowed behind the wildcard character *. Set the string containing the wildcard
character * to the filename through the command CMD_SET_FILE_NAME. For example, the
string “/*\0” indicates that all files or directories under the root directory will be enumerated; the
string “USB*\0” indicates that all files or directories beginning with three characters "USB" in the
current directory will be enumerated. Filenames (or directory names) meeting requirements include
"USB.TXT", "USB1234", "USB", "USBC.H", etc., but exclude "XUSB", "USB", "U2SB",
"MY.USB", etc.;

② Start enumerating files and directories through the command CMD_FILE_OPEN.
③ CH376 compares each filename. Every time a file meeting the requirements is found, an interrupt

will be generated to MCU. The interrupt status is USB_INT_DISK_READ to request MCU to read
data from CH376;

④ MCU reads the data through the command CMD_RD_USB_DATA0, analyzes and processes the
data immediately or saves the data first. The data is FAT file directory information (refer to the
definition of FAT_DIR_INFO structure in the file CH376INC.H);

⑤ MCU sends the command CMD_FILE_ENUM_GO to notify CH376 to continue enumeration;
⑥ CH376 continues to compare filenames. If it finds a file that meets the requirements again, go to the

step ③, otherwise proceed to the next step.
⑦ CH376 generates an interrupt to MCU with the interrupt status of ERR_MISS_FILE, indicating

that no more files meeting the requirements are found, and the whole enumeration operation ends.

In the step ④, MCU can analyze FAT_DIR_INFO structure to further confirm whether it is matched, or
record relevant information in order to further process at the end of the entire enumeration operation. MCU
can distinguish the ordinary file from the subdirectory (ATTR_DIRECTORY) through DIR_Attr file
attribute unit in the structure. DIR_Name filename unit in the structure can be used for precise comparison of
filenames. For example, compare the characters of file extensions DIR_Name[8], [9], [10] with "XLS" to
filter particular EXCEL files.

5.20. CMD_FILE_CREATE
This command is used to create a file. If the file already exists, delete it before creating.

http://wch.cn

CH376 Datasheet (I) http://wch.cn 14

Before creating the file command, set the filename of the file to be created through the command
CMD_SET_FILE_NAME. The format is the same as the command CMD_FILE_OPEN, but the wildcard
character is not supported. If a file with the same name exists, it will be deleted first, and then a new file will
be created. If the existing file is not expected to be deleted, confirm that the file does not exist through the
command CMD_FILE_OPEN before creating a new file. The default file date and time of the new file are
January 1, 2004 and 0:0:0, and the default file length is 1. If this information is required to be modified, it
can be realized through the commands CMD_DIR_INFO_READ and CMD_DIR_INFO_SAVE.

5.21. CMD_FILE_ERASE
This command is used to delete a file. If the file has been opened, it will be deleted directly. Otherwise, the
file will be opened and deleted automatically, and the subdirectory must be opened first.

For ordinary files, the deletion steps are as follows:
① Confirm that the previous file or directory has been closed, otherwise it will be deleted directly, not

affected by the step ②;
② Set the filename to be deleted through the command CMD_SET_FILE_NAME. The wildcard

character is not supported;
③ Automatically open the file and delete it through the command CMD_FILE_ERASE.

Subdirectories (or files) must be deleted by the following steps:
① For subdirectories, all files in subdirectories and subdirectories must be deleted in advance;
② Set the subdirectory name (or filename) to be deleted through the command

CMD_SET_FILE_NAME. The wildcard character is not supported;
③ Open the subdirectory name (or filename) through the command CMD_FILE_OPEN;
④ Delete the subdirectory (or file) that has been opened in the step ② through the command

CMD_FILE_ERASE.

5.22. CMD_FILE_CLOSE
This command is used to close the file or directory (folder) that has been opened. This command requires 1
input data to indicate whether the file length is allowed to be updated. If the data is 0, it will indicate that the
file length is disabled to be updated; if the data is 1, it will indicate that the file length is allowed to be
automatically updated.

The file shall be closed after the file or directory (folder) is read and written. For root directory operation, it
is necessary to close the file. For ordinary file read operation, it is optional to close the file. For ordinary file
write operation, choose whether the file length is automatically updated by CH376 while the file is closed.

If the file is read or written in sectors through the command CMD_SEC_LOCATE, CMD_SEC_READ or
CMD_SEC_WRITE, the file length automatically updated by CH376 will be calculated in sectors. The file
length is usually the multiple of the sector size 512. If the file length is not expected to be a multiple of the
sector size, MCU can modify the file length variable through the command CMD_SET_FILE_SIZE before
closing the file, or directly modify the file information through the commands CMD_DIR_INFO_READ and
CMD_DIR_INFO_SAVE.

If the file is read or written in byte through the command CMD_BYTE_LOCATE, CMD_BYTE_READ or
CMD_BYTE_WRITE, the file length automatically updated by CH376 will be calculated in byte, so an
appropriate length can be obtained.

5.23. CMD_DIR_INFO_READ
This command is used to read the directory information of the file, namely, FAT_DIR_INFO structure. This
command requires 1 input data to specify the index number of the directory information structure to be read
in the sector, the index number ranges from 00H to 0FH, and the index number 0FFH corresponds to the

http://wch.cn

CH376 Datasheet (I) http://wch.cn 15

currently opened file. The command just reads to the memory buffer. Later, MCU can read the data through
the command CMD_RD_USB_DATA0.

Each time a file is opened, CH376 gets directory information of the adjacent 16 files from the USB storage
device or SD card to be stored in the memory, and MCU can specify the index numbers 0-15 to respectively
correspond to each FAT_DIR_INFO structure, and can also specify the index number 0FFH to get
FAT_DIR_INFO structure of the file being opened, to analyze the file information such as date, time, length
and attribute.

5.24. CMD_DIR_INFO_SAVE
This command is used to save the directory information of the file. This command refreshes and saves the
directory information of 16 files in the memory to a USB storage device or SD card. The steps for modifying
the file directory information are as follows:
① File has been opened. Then go to ②, otherwise open the file through the commands

CMD_SET_FILE_NAME and CMD_FILE_OPEN;
② Read the FAT_DIR_INFO structure of the current file or adjacent file to the memory buffer through

the command CMD_DIR_INFO_READ;
③ Read the data from the memory buffer through the command CMD_RD_USB_DATA0. If no

modification is required, the step will end;
④ If it is necessary to modify, read FAT_DIR_INFO structure to the buffer again through the

command CMD_DIR_INFO_READ;
⑤ Write the modified data to the internal buffer through the command CMD_WR_OFS_DATA. For

example, write two bytes to the offset address 18H (DIR_WrtDate file date unit in the structure) as
the new file date.

⑥ Save the modified file directory information to the USB storage device or SD card through the
command CMD_DIR_INFO_SAVE.

5.25. CMD_BYTE_LOCATE
This command is used to move the current file pointer in bytes. The command requires to input the number
of offset bytes, which is a double-word data (32 bits) expressed by 4 bytes with low bytes in front. If the
interrupt status is USB_INT_SUCCESS after the command is executed, the absolute linear sector number
LBA (32-bit double-word data expressed by 4 bytes with low bytes in front) corresponding to the current file
pointer can be obtained through the command CMD_RD_USB_DATA0. The value will be 0FFFFFFFFH if
it has reached the end of the file.

When a file is created or reopened, the current file pointer is set to 0. Move the current file pointer to usually
read or write data from the specified location. For example, if MCU expects to skip the first 158 bytes of the
file before reading and writing data, it can use the parameter 158 as the offset byte through the command
CMD_BYTE_LOCATE. After the command is executed successfully, the read and write operation
immediately followed will start from the byte 158. For write operation, if MCU is prepared to continue
adding data at the tail of the original file without affecting the previous original data, a large byte offset can
be specified, such as 0FFFFFFFFH, to move the file pointer to the end of the original file in order to append
the data.

5.26. CMD_BYTE_READ
 1
5.27. CMD_BYTE_RD_GO
The command CMD_BYTE_READ is used to read data blocks from the current location in bytes, and the
command CMD_BYTE_RD_GO is used to continue the byte read operation. After successful reading,
CH376 automatically and synchronously moves the file pointer so that the next read and write operation can
be started from the data reading end position. This command requires to input the number of bytes requested

http://wch.cn

CH376 Datasheet (I) http://wch.cn 16

to be read, which is word data (16 bits) expressed by 2 bytes with low bytes in the front (Little-Endian).

A complete byte read operation is typically started through the command CMD_BYTE_READ and consists
of several interrupt notifications, several data block reads, and several CMD_BYTE_RD_GO commands.
The steps for a complete byte read operation are as follows:
① Open the file and make sure it is in the right position (file pointer);
② MCU sends the command CMD_BYTE_READ and inputs the number of bytes requested to be

read to start read operation;
③ CH376 calculates the remaining file length from the current file pointer to the file end position. If

the current file pointer is already at the end position of the file, or the number of remaining bytes
requested is 0, the read operation will be ended and an interrupt will be notified to MCU, with the
interrupt status of USB_INT_SUCCESS. Otherwise, CH376 calculates the number of bytes
allowed to be read according to the number of bytes requested, the remaining file length and the
internal buffer status, and subtracts the number of bytes allowed this time from the number of bytes
requested to get the number of remaining bytes requested, moves the current file pointer at the same
time, and then inform MCU of an interrupt, with interrupt status of USB_INT_DISK_READ;

④ MCU analyzes the interrupt status. If the interrupt status is USB_INT_DISK_READ, read the data
block through the command CMD_RD_USB_DATA0 and continue; if it is USB_INT_SUCCESS,
go to the step ⑥;

⑤ MCU sends the command CMD_BYTE_RD_GO to inform CH376 to continue read operation, and
CH376 automatically goes to the step ③;

⑥ At the end of the file or after the number of bytes requested to be read is read, the whole read
operation is ended.

MCU accumulates the length of data block obtained after several interrupt notifications to get the total length
actually read, and compares it with the number of bytes originally requested. If the latter is greater than the
former, the file pointer will be already at the end of the file.

5.28. CMD_BYTE_WRITE
 11
5.29. CMD_BYTE_WR_GO
The command CMD_BYTE_WRITE is used to write data blocks to the current location in bytes, and the
command CMD_BYTE_WR_GO is used to continue the byte write operation. After successful writing,
CH376 automatically and synchronously moves the file pointer so that the next read and write operation can
be started from the data writing end position. This command requires to input the number of bytes requested
to be written, which is word data (16 bits) expressed by 2 bytes with low bytes in the front (Little-Endian).
When the number of bytes requested is 0, it is only used to refresh the file length.

A complete byte write operation is typically started through the command typically and consists of several
interrupt notifications, several data block writes, and several CMD_BYTE_WR_GO commands. The steps
for a complete byte write operation are as follows:
① Open or create the file and make sure it is in the right position (file pointer);
② MCU sends the command CMD_BYTE_WRITE and inputs the number of bytes requested to be

written to start write operation;
③ CH376 checks the number of bytes requested. If it is 0, CH376 will perform the operation of

refreshing the file length, save the file length variable in the memory to the USB storage device or
SD card, then output the interrupt status USB_INT_SUCCESS, and go to the step ⑤;

④ CH376 checkes the number of remaining bytes requested. If it is 0, the write operation will be
ended and an interrupt will be notified to MCU, with the interrupt status of USB_INT_SUCCESS.
Otherwise, CH376 calculates the number of bytes allowed to be written according to the number of
bytes requested and the internal buffer status, and subtracts the number of bytes allowed this time

http://wch.cn

CH376 Datasheet (I) http://wch.cn 17

from the number of bytes requested to get the number of remaining bytes requested, and moves the
current file pointer at the same time. If it is appended data, CH376 will also update the file length
variable in the memory, and then inform MCU of an interrupt, with interrupt status of
USB_INT_DISK_WRITE;

⑤ MCU analyzes the interrupt status. If the interrupt status is USB_INT_DISK_WRITE, get the
number of bytes allowed this time through the command CMD_WR_REQ_DATA, write the data
block and continue; if the interrupt status is USB_INT_SUCCESS, go to the step ⑦;

⑥ MCU sends the command CMD_BYTE_WR_GO to inform CH376 to continue write operation,
and CH376 automatically goes to the step ④;

⑦ After the number of bytes requested to be written is written, the whole write operation is ended.

CH376 will automatically update the file length variable in the memory if data is appended directly to the
end of the file or if the automatically moved file pointer is beyond the end position of the original file during
a write operation. If another write operation is not intended to be performed within a short period of time
after the completion of the entire write operation, MCU shall inform CH378 to refresh the file length
variable in the memory to the USB storage device or SD card. There are two methods: Write 0 length data
similar to the steps ② and ③; execute the command CMD_FILE_CLOSE and allow the length to be
updated.

5.30. CMD_DISK_CAPACITY
This command is used to inquire the physical capacity of the disk and supports the USB storage device or
SD card. If the interrupt status is USB_INT_SUCCESS after the command is executed, the physical capacity
of the disk can be obtained through the command CMD_RD_USB_DATA0, namely, the total number of
sectors. The capacity is double-word data (32 bits) expressed by 4 bytes with low bytes in the front. If it is
multiplied by the sector size 512, the total physical capacity can be obtained in bytes.

5.31. CMD_DISK_QUERY
This command is used to query the disk space information, including free space and file system type. If the
interrupt status is USB_INT_SUCCESS after the command is executed, the total number of sectors (32-bit
double word data expressed by 4 bytes with low bytes in the front), the number of residual sectors of the
current logic disk (32-bit double word data expressed by 4 bytes with low bytes in the front) and the FAT file
system type of the logic disk (refer to CH376_CMD_DATA structure in the file CH376INC.H) can be
obtained in turn through the command CMD_RD_USB_DATA0.

5.32. CMD_DIR_CREATE
This command is used to create a new subdirectory (folder) and open it. If the subdirectory already exists,
open it directly. Only the first level subdirectory is supported. See EXAM9 for creation of multi-level
subdirectories.

Before creating the subdirectory command, set the directory name of the subdirectory to be created through
the command CMD_SET_FILE_NAME. The format is the same as the command CMD_FILE_CREATE. If
there are common files with the same name, the interrupt status will be ERR_FOUND_NAME; the interrupt
status is USB_INT_SUCCESS if a new subdirectory is created successfully or if a preexisting subdirectory
is opened. The file date and time of the new subdirectory are the same as that when a new file is created
through the command CMD_FILE_CREATE, and the modification method is the same, except that the file
attribute is ATTR_DIRECTORY, and the file length is always 0 (the file length of the subdirectory must be 0
according to the FAT specification).

5.33. CMD_SEC_LOCATE
This command is used to move the current file pointer in sector and does not support SD card. The command
requires to input the number of offset sectors, which is a double-word data (32 bits) expressed by 4 bytes

http://wch.cn

CH376 Datasheet (I) http://wch.cn 18

with low bytes in front. If the interrupt status is USB_INT_SUCCESS after the command is executed, the
absolute linear sector number LBA (32-bit double-word data expressed by 4 bytes with low bytes in front)
corresponding to the current file pointer can be obtained through the command CMD_RD_USB_DATA0.
The value will be 0FFFFFFFFH if it has reached the end of the file.

When a file is created or reopened, the current file pointer is set to 0. Move the current file pointer to usually
read or write data from the specified location. For example, if MCU expects to skip the first 18 sectors of the
file before reading and writing data, it can use the parameter 18 as the number of offset sectors through the
command CMD_SEC_LOCATE. After the command is executed successfully, the read and write operation
immediately followed will start from the sector 18. For write operation, if MCU is prepared to continue
adding data at the tail of the original file without affecting the previous original data, a large byte offset can
be specified, such as 0FFFFFFFFH, to move the file pointer to the end of the original file in order to append
the data.

5.34. CMD_SEC_READ
This command is used to get the parameter information for reading data blocks from the current location in
sector, and does not support SD card. After the successful execution of command, CH376 automatically and
synchronously moves the file pointer so that the next read and write operation can be started from the data
reading end position. This command requires to input 1 data to specify the number of sectors to be read, with
valid values of 1-255. If the interrupt status is USB_INT_SUCCESS after the command is executed, 8 bytes
of returned result can be obtained through the command CMD_RD_USB_DATA0: the first byte is the
number of sectors to be allowed to be read, and 0 indicates that the file pointer is already at the end of the
file; the last four bytes are the initial absolute linear sector number LBA of the sector block allowed to be
read (32-bit double-word data expressed by 4 bytes with the low bytes in the front).

The parameter information for a complete sector read operation is typically obtained through the command
CMD_SEC_READ, and then the sector read operation is started through the command CMD_DISK_READ
and consists of several interrupt notifications, several data block reads, and several CMD_DISK_RD_GO
commands. The steps for a complete sector read operation are as follows:
① Open the file and make sure it is in the right position (file pointer);
② MCU sends the command CMD_SEC_READ and inputs the number of sectors requested to be

read;
③ After calculating the parameters, CH376 notifies the notifies of the interrupt with interrupt status of

USB_INT_SUCCESS;
④ MCU reads the parameters, the starting LBA of the sector block and the number of sectors allowed

to read through the command CMD_RD_USB_DATA0. If the number of sectors allowed to be read
is 0, it will indicate that the file is ended, then go to the step ⑨.

⑤ MCU sends the command CMD_DISK_READ and inputs the above parameters to start read
operation;

⑥ Each sector is broken into eight 64-byte data blocks. If eight data blocks of all sectors allowed to be
read are processed, end the read operation and notify MCU of an interrupt with the interrupt status
of USB_INT_SUCCESS, otherwise CH376 reads a 64-byte data block from the USB storage
device, then notifies MCU of an interrupt and requests to read data blocks, with the interrupt status
of USB_INT_DISK_READ;

⑦ MCU analyzes the interrupt status. If the interrupt status is USB_INT_DISK_READ, read the data
block through the command CMD_RD_USB_DATA0 and continue; if it is USB_INT_SUCCESS,
go to the step ⑨;

⑧ MCU sends the command CMD_DISK_RD_GO to inform CH376 to continue read operation, and
CH376 automatically goes to the step ⑥;

⑨ After the number of sectors allowed to be read is read, the whole read operation is ended.

http://wch.cn

CH376 Datasheet (I) http://wch.cn 19

5.35. CMD_SEC_WRITE
This command is used to get the parameter information for writing data blocks to the current location in
sector, and does not support SD card. After the successful execution of command, CH376 automatically and
synchronously moves the file pointer so that the next read and write operation can be started from the data
writing end position. This command requires to input 1 data to specify the number of sectors requested to be
written, with valid values of 0 to 255. When the number of requested sectors is 0, it is only used to refresh
the file length. If the interrupt status is USB_INT_SUCCESS after the command is executed, 8 bytes of
returned result can be obtained through the command CMD_RD_USB_DATA0: the first byte is the number
of sectors to be allowed to be written; the last four bytes are the initial absolute linear sector number LBA of
the sector block allowed to be written (32-bit double-word data expressed by 4 bytes with the low bytes in
the front).

The parameter information for a complete sector write operation is typically obtained through the command
CMD_SEC_WRITE, and then the sector read operation is started through the command
CMD_DISK_WRITE and consists of several interrupt notifications, several data block writes, and several
CMD_DISK_WR_GO commands. The steps for a complete sector write operation are as follows:
① Open or create the file and make sure it is in the right position (file pointer);
② MCU sends the command CMD_SEC_WRITE and inputs the number of sectors requested to be

written;
③ CH376 checks the number of sectors requested. If it is 0, CH376 will perform the operation of

refreshing the file length, save the file length variable in the memory to the USB storage device,
then output the interrupt status USB_INT_SUCCESS. Otherwise, after calculating the parameters,
CH376 notifies MCU of an interrupt with the interrupt status of USB_INT_SUCCESS;

④ MCU reads the parameters, the starting LBA of the sector block and the number of sectors allowed
to be written through the command CMD_RD_USB_DATA0. If the number of sectors allowed to
be written is 0, it will indicate that the file length is refreshed or the disk is full, then go to the step
⑨;

⑤ MCU sends the command CMD_DISK_WRITE and inputs the above parameters to start write
operation;

⑥ Each sector is broken into eight 64-byte data blocks. If eight data blocks of all sectors allowed to be
written are processed, end the write operation and notify MCU of an interrupt with the interrupt
status of USB_INT_SUCCESS, otherwise notify MCU of an interrupt and requests to write data
blocks, with the interrupt status of USB_INT_DISK_WRITE;

⑦ MCU analyzes the interrupt status. If the interrupt status is USB_INT_DISK_WRITE, write a
64-byte data block through the command CMD_WR_HOST_DATA and continue; if it is
USB_INT_SUCCESS, go to the step ⑨;

⑧ MCU sends the command CMD_DISK_WR_GO to inform CH376 to continue write operation, and
CH376 automatically goes to the step ⑥ after writing the above data blocks to the USB storage
device;

⑨ After the number of sectors allowed to be written is written, the whole write operation is ended.

CH376 will automatically update the file length variable in the memory if data is appended directly to the
end of the file or if the automatically moved file pointer is beyond the end position of the original file during
a write operation. If another write operation is not intended to be performed within a short period of time
after the completion of the entire write operation, MCU shall inform CH378 to refresh the file length
variable in the memory to the USB storage device. There are two methods: Write 0 length data similar to the
steps ② and ③; execute the command CMD_FILE_CLOSE and allow the length to be updated.

5.36. CMD_DISK_BOC_CMD
This command is used to execute BulkOnly transport protocol commands for USB storage devices. Before
executing the command, MCU must first write the corresponding CBW packet to CH376 through the

http://wch.cn

CH376 Datasheet (I) http://wch.cn 20

command CMD_WR_HOST_DATA (refer to BULK_ONLY_CBW structure in the file CH376INC.H).
CH376 requests an interrupt from MCU after the command is executed. If the interrupt status is
USB_INT_SUCCESS, the command will be executed successfully. For the data return operation, the data
can be returned through the command CMD_RD_USB_DATA0.

5.37. CMD_DISK_READ
 111
5.38. CMD_DISK_RD_GO
The command CMD_DISK_READ is used to read physical sectors from USB storage devices, the command
CMD_DISK_RD_GO is used to continue executing the physical sector read operation of the USB storage
device, and does not support SD cards.

The command CMD_DISK_READ requires two sets of parameters: a 4-byte sector start address and a
1-byte sector number. The sector start address is the linear sector number LBA, which is a 32-bit
double-word data expressed by 4 bytes with the low bytes in front. This command requires to input 5 data,
respectively the lowest byte of LBA address, the lower byte of LBA address, the higher byte of LBA address,
the highest byte of LBA address and the number of sectors in turn. This command can read the data of 1-255
sectors at a time in the USB storage device.

A complete physical sector read operation is typically started through the command CMD_DISK_READ and
consists of several interrupt notifications, several data block reads, and several CMD_DISK_RD_GO
commands. The operation steps are as follows:
① MCU ends the command CMD_DISK_READ and specifies the initial LBA and the number of

sectors to start the read operation;
② Each sector is broken into eight 64-byte data blocks. If eight data blocks of all sectors required to

be read are processed, end the read operation and notify MCU of an interrupt with the interrupt
status of USB_INT_SUCCESS, otherwise CH376 reads a 64-byte data block from the USB storage
device, then notifies MCU of an interrupt and requests to read data blocks, with the interrupt status
of USB_INT_DISK_READ;

③ MCU analyzes the interrupt status. If the interrupt status is USB_INT_DISK_READ, read the data
block through the command CMD_RD_USB_DATA0 and continue; if it is USB_INT_SUCCESS,
go to the step ⑤. If the interrupt status is USB_INT_DISK_ERR, it will indicate that the operation
failed, then go to the step ⑤, and try again if necessary.

④ MCU sends the command CMD_DISK_RD_GO to inform CH376 to continue read operation, and
CH376 automatically goes to the step ②;

⑤ After the number of sectors specified to be read is read, the whole read operation is ended.

Even if the command DISK_READ sent by MCU only reads 1 sector, MCU will normally receives 9
interrupts. The first 8 interrupts require MCU to take data, and the last interrupt is to return the final
operation status. If 4 sectors are read, MCU will normally receive 33 interrupts, the first 32 interrupts require
MCU to take data. If the read operation fails midway, MCU may receive the status USB_INT_DISK_ERR in
advance, so as to end the read operation in advance.

5.39. CMD_DISK_WRITE
1111
5.40. CMD_DISK_WR_GO
The command CMD_DISK_WRITE is used to write physical sectors to the USB storage device, the
command CMD_DISK_WR_GO is used to continue executing the physical sector write operation of the
USB storage device, and does not support SD cards.

The command CMD_DISK_WRITE requires two sets of parameters: a 4-byte sector start address and a
1-byte sector number. The sector start address is the linear sector number LBA, which is a 32-bit

http://wch.cn

CH376 Datasheet (I) http://wch.cn 21

double-word data expressed by 4 bytes with the low bytes in front. This command requires to input 5 data,
respectively the lowest byte of LBA address, the lower byte of LBA address, the higher byte of LBA address,
the highest byte of LBA address and the number of sectors in turn. This command can write the data of
1-255 sectors at a time in the USB storage device.

A complete physical sector write operation is typically started through the command CMD_DISK_WRITE
and consists of several interrupt notifications, several data block writes, and several CMD_DISK_WR_GO
commands. The operation steps are as follows:
① MCU sends the command CMD_DISK_WRITE and specifies the initial LBA and the number of

sectors to start the write operation;
② Each sector is broken into eight 64-byte data blocks. If eight data blocks of all sectors required to

be written are processed, end the write operation and notify MCU of an interrupt with the interrupt
status of USB_INT_SUCCESS, otherwise notify MCU of an interrupt and requests to write data
blocks, with the interrupt status of USB_INT_DISK_WRITE;

③ MCU analyzes the interrupt status. If the interrupt status is USB_INT_DISK_WRITE, write a
64-byte data block through the command CMD_WR_HOST_DATA and continue; if it is
USB_INT_SUCCESS, go to the step ⑤. If the interrupt status is USB_INT_DISK_ERR, it will
indicate that the operation failed, then go to the step ⑤, and try again if necessary.

④ MCU sends the command CMD_DISK_WR_GO to inform CH376 to continue write operation, and
CH376 automatically goes to the step ② after writing the above data blocks to the USB storage
device;

⑤ After the number of sectors specified to be written is written, the whole write operation is ended.

Even if the command DISK_WRITE sent by MCU only reads 1 sector, MCU will normally receive 9
interrupts. The first 8 interrupts require MCU to provide data, and the last interrupt is to return the final
operation status. If 4 sectors are written, MCU will normally receive 33 interrupts, the first 32 interrupts
require MCU to provide data. If the write operation fails midway, MCU may receive the status
USB_INT_DISK_ERR in advance, so as to end the write operation in advance.

6. Functional Specification
6.1. Communication Interfaces of MCU
There are three communication interfaces supported between CH376S and MCU: 8-bit parallel interface, SPI
synchronous serial interface and asynchronous serial interface. During chip power on reset, CH376S will
sample the statuses of WR#, RD#, PCS#, A0, RXD and TXD pins, and select the communication interface
according to the combination of these pin statuses. Refer to the following table (X in the table means that
this bit is not concerned, 0 means low level, 1 means high level or suspended).

WR# pin RD# pin PCS# pin A0 pin RXD pin TXD pin
Select the communication

interface
0 0 1 1 1 1 SPI interface

1 1 1 1 1 1
Asynchronous serial

interface
1 1/X 1/X X 1 0 8-bit parallel port

Other state
CH376S chip does not work
RST pin always outputs high

level

There are two communication interfaces supported between CH376T and MCU: SPI synchronous serial
interface and asynchronous serial interface. During power on reset, CH376T chip will sample the state of
SPI# pin. If SPI# is at low level, SPI interface will be selected; if SPI# is at high level, the asynchronous

http://wch.cn

CH376 Datasheet (I) http://wch.cn 22

serial interface will be selected.

The interrupt request of INT# pin output of CH376 is active at low level by default and can be connected to
the interrupt input pin or ordinary input pin of MCU. MCU can get the interrupt request of CH376 in
interrupt mode or query mode. To save pins, MCU can get the interrupt in other way without being
connected to INT# pin of CH376.

6.2. Parallel Interfaces
The parallel port signal line includes: 8-bit bidirectional data buses D7-D0, read strobe input pin RD#, write
strobe input pin WR#, chip selection input pins PCS# and address input pin A0. PCS# pin of CH376 is
driven by the address decoding circuit, which is used for device selection when MCU has multiple peripheral
devices. CH376 can be easily hooked to the system buses of various 8-bit DSP and MCU through a passive
parallel interface, and can coexist with multiple peripheral devices.

For MCU similar to the Intel parallel port timing sequence, RD# and WR# pins of CH376 can be connected
to the read strobe output pin and write strobe output pin of MCU respectively. For MCU similar to Motorola
parallel port time sequence, RD# pin of the CH376 shall be connected to the low level, and the WR# pin
shall be connected to the reading and writing direction output pin R/-W of MCU.

The following table is the truth table of the parallel port I/O operation (X in the table means that this bit is
not concerned, and Z means that three states of CH376 are disabled).

PCS# WR# RD# A0 D7-D0 Actual operation on CH376
1 X X X X/Z CH376 is not selected, and no any operation is made
0 1 1 X X/Z Although selected, no any operation is made
0 0 1/X 1 Input Write a command code to the command port of CH376
0 0 1/X 0 Input Write data to the data port of CH376
0 1 0 0 Output Read data from the data port of CH376

0 1 0 1 Output

Read interface status from the command port of CH376:
Bit 7 is an interrupt flag, active low, equivalent to INT# pin,
Bit 4 is a busy flag, active high, equivalent to BZ pin of SPI

interface

CH376 occupies two address bits. When A0 pin is at high level, write a new command, or read the interface
status; when A0 pin is at low level, select the data port to read and write the data.

MCU reads and writes CH376 through an 8-bit parallel port. All operations are composed of a command
code, several input data and several output data. Some commands do not need input data, and some
commands do not have output data. The command operation steps are as follows:

①、 MCU writes the command code to the command port when A0 is 1;
②、 If the command has input data, write the input data in sequence when A0 is 0, one byte at a time;
③、 If the command has output data, read the output data in sequence when A0 is 0, one byte at a

time;
④、 The command is completed. The interrupt notification will be generated for some commands.

MCU can be paused or go to ① to continue to execute the next command.

6.3. SPI
The SPI synchronous serial interface signal lines include: SPI chip selection input pin SCS, serial clock input
pin SCK, serial data input pin SDI, serial data output pin SDO and interface busy status output pin BZ.
CH376 can be hooked to SPI serial buses of various DSP and MCU with fewer connections through SPI
serial interface by using less connecting wires, or be connected point-to-point over a longer distance.

The SCS pin of CH376 is driven by the SPI chip selection output pin or the general output pin of MCU. SCK

http://wch.cn

CH376 Datasheet (I) http://wch.cn 23

pin is driven by the SPI clock output pin SCK of MCU. SDI pin is driven by the SPI data output pin SDO or
MOSI, and SDO pin is connected to the SPI data input pin SDI or MISO of MCU. For the hardware SPI
interface, it is recommended that the SPI setting is CPOL=CPHA=0 or CPOL=CPHA=1, and the data bit
sequence is MSB first. SPI interface of CH376 supports MCU to simulate SPI interface for communication
with the common I/O pins.

If INT# pin is not connected, the interrupt can be gotten by inquiring SDO pin. The method is as follows:
make SDO pin use an input pin of MCU exclusively, and set the SDO pin as the interrupt request output
through the command CMD_SET_SDO_INT if the chip selection of MCU is invalid.

The SPI interface of CH376 supports SPI mode 0 and SPI mode 3. CH376 always inputs data from the rising
edge of the SPI clock SCK, and outputs data from the falling edge of SCK when the output is allowed. The
data bit sequence is MSB first, and 8 full bits are a byte.

Operation procedure of SPI:
① MCU generates the SPI chip selection of CH376, which is active at low level;
② MCU sends a byte of data in SPI output mode. CH376 always takes the first byte received after SPI

chip selection SCS is valid as the command code and takes the subsequent bytes as data;
③ MCU inquires that the SPI interface is free when BZ pin wait for CH376, or directly delays the

TSC time (about 1.5uS);
④ If it is a write operation, MCU sends a byte of write data to CH376. After waiting for SPI interface

to be free, MCU continues to send several bytes of write data, and CH376 receives them in turn
until MCU disables SPI chip selection.

⑤ If it is a read operation, MCU receives a byte of data from CH376. After waiting for SPI interface
to be free, MCU continues to receive several bytes of data from CH376 until MCU disables SPI
chip selection;

⑥ MCU disables the SPI chip selection of CH376 to end the current SPI operation.

The figure below is an SPI interface logic sequence diagram. The first one sends the command 12H and
writes 34H, and the second one sends the command 28H and reads the data 78H.

6.4. Asynchronous Serial Interface
The serial data format of CH376 asynchronous serial interface is not compatible with CH375 chip and does
not support USB device mode of external firmware.

The signal line of the asynchronous serial interface includes serial data input pin RXD and serial data output
pin TXD. CH376 can be connected point-to-point to DSP and MCU through a serial interface by using less

http://wch.cn

CH376 Datasheet (I) http://wch.cn 24

connecting wires over a longer distance.

RXD and TXD of CH376 can be connected to the serial data output pin and serial data input pin of MCU
respectively.

The serial data format of CH376 is the standard byte transmission mode, consisting of 1 start bit, 8 data bits
and 1 stop bit.

CH376 not only supports hardware to set the default serial communication baud rate, but also supports MCU
to select the appropriate communication baud rate through the command CMD_SET_BAUDRATE at any
time. After each power on reset, the default serial communication baud rate of CH376 is set by the level
combination of three pins BZ/D4, SCK/D5 and SDI/D6. Refer to the following table (0 represents low level,
and 1 represents high level or suspended).

SDI/D6 pin SCK/D5 pin BZ/D4 pin Default serial communication baud rate after power
on reset

1 1 1 9600 bps
1 1 0 57600 bps
1 0 1 115200 bps
1 0 0 460800 bps
0 1 1 250000 bps
0 1 0 1000000 bps
0 0 1 2000000 bps
0 0 0 921600 bps

In order to distinguish the command code from the data, CH376 requires MCU to first send two synchronous
code bytes (57H and ABH) through the serial port, then send the command code, and then send or receive
the data. CH376 will check the interval between the above two synchronous code bytes and between the
synchronous code and the command code. If the interval is greater than the serial input timeout of
SER_CMD_TIMEOUT (approximately 32mS), CH376 will discard the synchronous code and the command
packet. The operation steps of serial port command are as follows:

① MCU sends the first synchronous code 57H to CH376 through the serial port;
② MCU sends the second synchronous code 0ABH to CH376;
③ MCU sends the command code to CH376;
④ If the command has input data, MCU will send the input data to CH376 in turn, one byte at a time;
⑤ If the command has output data, MCU will receive the output data from CH376 in turn, one byte

at a time;
⑥ The command is completed. Interrupt notification may be generated after some commands are

executed, and the interrupt status code will be directly sent through the serial port. MCU can be
paused or go to ① to continue to execute the next command.

6.5. Other Hardware
CH376 integrates USB-SIE and Phy-I/O, CRC data check, USB-Host controller, USB-Device controller, SD
card SPI-Host controller, passive parallel interface, SPI-Slave controller, asynchronous serial interface,
double-port SRAM, FIFO, high-speed MCU, firmware program, crystal oscillator and PLL frequency
multiplier, power on reset circuit, etc.

ACT# pin of CH376 is used for the status indicator output. After the USB device is not configured or is
unconfigured in USB device mode of internal firmware, this pin will output a high level; when the USB
device is configured, this pin will output a low level. In the USB host mode, when the USB device is
disconnected, the pin outputs a high level; when the USB device is connected, the pin outputs a low level. In
the SD card host mode, the pin outputs a low level when the SPI communication of SD card is successful.

http://wch.cn

CH376 Datasheet (I) http://wch.cn 25

ACT# pin of CH376 can be externally connected to an LED with a current limiting resistor connected in
series to indicate the relevant status.

The UD+ and UD- pins of CH376 are USB signal lines, which shall be directly connected to the USB bus
when working in USB device mode; yet they can be directly connected to USB device when working in
USB host mode. If a fuse resistor or inductor or ESD protection device is connected in series for chip safety,
the AC and DC equivalent series resistors shall be within 5Ω.

CH376 has a built-in power on reset circuit. Generally, no external reset is required. RSTI pin is used to
input an asynchronous reset signal from the outside; when RSTI pin is at high level, CH376 will be reset;
when RSTI pin recovers to a low level, CH376 will continuously delay reset for about 35mS, and then enter
the normal working status. In order to reliably reset and reduce external interference during the power-on
period, a capacitor with a capacity of about 0.1uF can be connected across the RSTI pin and VCC. RST pin
(with alias of SD_DO pin) is an active high reset status output pin, which can be used to provide a power on
reset signal to the external MCU. RST pin outputs high level when CH376 is reset during power-on or
externally forced to be reset and during reset delay; after CH376 is reset and the communication interface is
initialized, RST pin recovers to the low level.

When CH376 works normally, 12MHz clock signal shall be provided for it externally. CH376 has a built-in
crystal oscillator and an oscillating capacitor. Generally, the clock signal is generated by the built-in
oscillator of CH376 through a crystal stable frequency oscillator, and the peripheral circuit is only required
to be connected with a crystal with a nominal frequency of 12MHz between XI and XO pins (a 15pF
capacitor may be required to be added on XO pin for some crystals). If the 12MHz clock signal is inputted
directly from the outside, it shall be inputted from the XI pin, and the XO pin is suspended.

CH376 supports supply voltage of 3.3V or 5V. When the operating voltage is 5V (more than 4V), VCC pin
of CH376 will input an external 5V power supply, and V3 pin shall be externally connected to a power
decoupling capacitor with a capacity of about 4700pF-0.02uF. When the operating voltage is 3.3V (less than
4V), V3 pin of the CH376 shall be connected to VCC pin, and an external 3.3V power supply shall be
inputted at the same time, and the operating voltage of other circuits connected to CH376 shall not exceed
3.3V.

7. Parameters
7.1. Absolute Maximum Value
Critical value or exceeding the absolute maximum value may cause the chip to work abnormally or even be
damaged.

Name Parameter description Min. Max. Unit

TA
Ambient temperature during

operation

VCC=5V -40 85

℃ VCC=V3=3.3V -40 85

VCC=V3=3V -40 70

TS Ambient temperature during storage -55 125 ℃

VCC Supply voltage (VCC connects to power, GND to
ground)

-0.5 6.0 V

VIO Voltage on the input or output pins -0.5 VCC+0.5 V

7.2. Electrical Parameters
Test Conditions: TA=25℃, VCC=5V, Excluding the Pins Connected to the USB Bus
(If the supply voltage is 3.3V, all current parameters in the table need to be multiplied by a factor of 40%)

http://wch.cn

CH376 Datasheet (I) http://wch.cn 26

Name Parameter description Min. Typ. Max. Unit

VCC
Power
supply
voltage

V3 is not connected to VCC 4.3 5 5.3
V

V3 is connected to VCC,
V3=VCC 3.0 3.3 3.6

ICC
Total supply current during

operation
VCC=5V 12 30

mA
VCC=3.3V 6 15

ISLP

Supply current at the low
power status

I/O pin suspended/ internal
pull-up

VCC=5V 0.15
mA

VCC=3.3V 0.05

VIL Low level input voltage -0.5 0.7 V
VIH High level input voltage 2.0 VCC+0.5 V

VOL
Low level output voltage (4mA draw

current) 0.5 V

VOH
High level output voltage (4mA output

current)
VCC-0.5 V

IUP Input current at the input terminal of built-in
pull-up resistor

30 80 160 uA

IUP2
Open-drain output pin ACT# and SD_CS

Input current at the input terminal of built-in
pull-up resistor

100 230 500 uA

IDN
Input current at the input terminal of built-in

pull-down resistor -30 -80 -200 uA

VR Voltage threshold of power-on reset 2.4 2.7 2.9 V
Note: Low level draw current of ACT# pins and SD_CS pins is 4mA, and the high level output current is

200uA.
During CH376 reset, INT# and TXD pins only provide the high level output current of 80uA.

7.3. Timing Parameters
Test Conditions: TA=25℃, VCC=5V or VCC=3.3V, refer to the attached figure.

Name Parameter description Min. Typ. Max. Unit

FCLK
Input clock frequency of XI pin in USB host

mode
11.995 12.00 12.005 MHz

TPR Internal power-on reset time 25 35 40 mS
TRI Effective signal width of external reset input 100 nS
TRD Reset delay after external reset input 25 32 35 mS

TWAK
Wake-up time when exiting from low-power

state
3 7 12 mS

TE1 Execution time of command
CMD_RESET_ALL

 32 35 mS

TE2
Execution time of command
CMD_SET_USB_MODE

 4 10 uS

TE3 Execution time of command TEST_CONNECT
or SET_ENDP?

 2 3 uS

TE4
Execution time of command
CMD_SET_BAUDRATE

200 1000 2000 uS

http://wch.cn

CH376 Datasheet (I) http://wch.cn 27

TE0 Execution time of other commands 1.5 2 uS
TSX Interval time between command codes 1.5 uS
TSC Interval time between command code and data 1.5 uS
TSD Interval time between data and data 0.6 uS

TINT Receive the command GET_STATUS until
INT# pin undoes the interrupt

 1.5 2 uS

7.4. Parallel Port Timing Parameters
Test Conditions: TA=25℃, VCC=5V, Parameter in Brackets VCC=3.3V, refer to the attached figure
(RD means that RD# signal is valid and PCS# signal is valid; perform read operation when RD#=PCS#=0)
(WR means WR# signal is valid and PCS# signal is valid, perform write operation when WR#=PCS#=0)

Name Parameter description Min. Typ. Max. Unit

TWW Write pulse width 30 (45) nS
TRW Read pulse width 40 (60) nS
TAS Address input setup time before RD or WR 4 (6) nS
TAH Address input hold time after RD or WR 4 (6) nS
TIS Data setup time before Write HIGH 0 nS
TIH Data hold time after Write HIGH 4 (6) nS
TON Data output valid after Read active 2 12 18 (30) nS

TOF Data output invalid after Read inactve 3 16 24 (40) nS

7.5. SPI Timing Parameters
Test Conditions: TA=25℃, VCC=5V, the parameter in brackets VCC=3.3V, referring to the attached figure

http://wch.cn

CH376 Datasheet (I) http://wch.cn 28

Name Parameter description Min. Typ. Max. Unit

TSS
Effective setup time of SCS before SCK rising

edge
20 (30) nS

TSH Effective hold time of SCS after SCK rising
edge

20 (30) nS

TNS
Ineffective setup time of SCS before SCK

rising edge
20 (30) nS

TNH Hold time of invalid SCS after SCK rising
edge

20 (30) nS

TN
Ineffective time of SCS (SPI operation

interval time)
80 (120) nS

TCH SCK clock high-level time 14 (18) nS
TCL SCK clock low-level time 18 (24) nS
TDS SDI input setup time before SCK rising edge 6 (8) nS
TDH SDI input hold time after SCK rising edge 2 nS
TOX Output change from SCK falling edge to SDO 3 8 (12) 12 (18) nS
TOZ SCS invalid to SDO output invalid 4 18 (25) nS

8. Application
8.1. Application of USB Flash Disk, 5V Power Supply (Figure below)

http://wch.cn

CH376 Datasheet (I) http://wch.cn 29

This is the application circuit of CH376 operating USB flash disk at 5V supply voltage.

If CH376 is required to be configured as 8-bit parallel communication mode PARALLEL, TXD shall be
connected to GND and other pins shall be suspended.

If CH376 is required to be configured as SPI serial communication mode, RD# and WR# shall be connected
to GND and other pins shall be suspended.

If CH376 is required to be configured as the asynchronous serial communication mode UART/SERIA, all
pins shall be suspended and the default serial communication baud rate shall be set by SDI/D6, SCK/D5 and
BZ/D4 pins. If the communication baud rate of CH376 serial port is required to be dynamically modified, it
will be suggested that the I/O pin of MCU control RSTI pin of CH376, so as to reset CH376 to return to the
default communication baud rate when necessary. Because RSTI pin has a pull-down resistor, a pull-up
resistor with resistance of several KΩ may be required to be added when the quasi-bidirectional I/O pin of
MCS51 MCU drives it.

As INT# pins and TXD pin can only provide weak high level output current during CH376 reset, when a
long distance connection is conducted, in order to avoid INT# or TXD interference caused by MCU
misoperation during CH376 reset, a pull-up resistor with resistance of 2KΩ-5KΩ can be added on INT# pin
or TXD pin to maintain a stable high level. After CH376 reset is completed, INT# and TXD pins will be able
to provide either a high level output current of 4mA or a low level sinking current of 4mA.

To save pins, MCU can get the interrupt without being connected to INT# pin of CH376. The methods are as
follow:
① In the 8-bit parallel port mode, the interface status is gotten by inquiring the status port of CH376

(namely, the command port). Bit 7 is the interrupt flag PARA_STATE_INTB, which is active low
and equivalent to the query of INT# pin. If bit 7 is 0, there will be an interrupt request;

② In SPI interface mode, the interrupt is obtained by inquiring SDO pin (after power-on or reset, SDO
pin shall be set as the interrupt request output through the command CMD_SET_SDO_INT when
the SCS chip selection is invalid). If SDO is at low level, it will indicate that there is an interrupt
request;

③ When CH376 generates an interrupt notification (INT# becomes low level), it sends an interrupt
status code directly through the serial port. MCU receives the interrupt status code, indicating that
there is an interrupt request.

R2 is used to limit the current supplied to the external USB device as a USB host. The high-speed electronic
switches with current limiting function can be connected in series if necessary. USB supply voltage must be
5V.

http://wch.cn

CH376 Datasheet (I) http://wch.cn 30

The capacitor C3 is used for decoupling the internal power node of CH376. C3 is a monolithic or
high-frequency ceramic capacitor with a capacity of 4700pF to 0.02μF. Capacitors C4 and C5 are used for
decoupling the external power supply, and C4 is a monolithic or high-frequency ceramic capacitor with a
capacity of 0.1μF. The crystal X1 is used for the clock oscillation circuit. The USB-HOST mode requires
accurate clock frequency, and the frequency of the crystal X1 is 12MHz±0.4‰. The oscillating capacitor C1
is selectable, with capacity of 0-22pF according to the characteristics of crystal X1.

It shall be noticed that the decoupling capacitors C3 and C4 shall be as close as possible to the connected
pins of CH376 when the printed circuit board PCB is designed; the D+ and D- signal lines shall be close to
parallel wiring, and ground wire or covered copper shall be provided on both sides to reduce the external
signal interference; the length of the signal lines related to the XI and XO pins shall be shortened as far as
possible to reduce the high-frequency clock interference to the outside. The ground wire or covered copper
shall surround the relevant components.

8.2. Application of SD card and USB Flash Disk, 3.3V Power Supply (Figure below)

This is the application circuit of CH376 operating USB flash disk and SD card at 3.3V or 3V supply voltage.

P3 is a simplified SD card slot. The pin can be directly connected to the I/O or interrupt input pin of MCU in
the SD card plug state.

The communication interface configuration is the same as 5V voltage application. Refer to Section 8.1.

R4 is used to limit the current supplied to the external USB device as a USB host. The high-speed electronic
switches with current limiting function can be connected in series if necessary. USB supply voltage must be
5V.

The supply voltage of CH376 is 3.3V. In the figure, V3 pin is short-circuited with VCC pin to jointly input
3.3V voltage.

Capacitors C14 and C15 are used for decoupling the external power supply, and C14 is a monolithic or
high-frequency ceramic capacitor with a capacity of 0.1μF. The oscillating capacitor C1 is selectable
according to the characteristics of crystal X1.

8.3. Application Basis
A USB flash disk (or SD card, the same below) provides a number of physical sectors for data storage, and
the size of each sector is typically 512 bytes. As the computer usually organizes the physical sectors of the
USB flash disk as the FAT file system, MCU shall also access the data of the USB flash disk in the form of

http://wch.cn

CH376 Datasheet (I) http://wch.cn 31

file under the FAT specification in order to facilitate the data exchange between MCU and the computer
through the USB disk or SD card.

A USB flash disk can have several files, each of which is a collection of a set of data, being distinguished
and identified by the filename. The storage of actual file data may not be continuous, but by multiple blocks
(i.e., allocation units or clusters) linked by a set of "pointers", so that the file length can be increased as
needed to accommodate more data. Directories (folders) are designed to facilitate classified management.
The administrator can artificially specify multiple files to be filed together, for example, files in 2004 are
filed in a single directory (folder).

In the FAT file system, the disk capacity is allocated in the basic unit of cluster, and the size of cluster is
always a multiple of the sector, so the space occupied by the file is always a multiple of the cluster and also a
multiple of the sector. Although the space occupied by files is a multiple of the cluster or sector, in practice,
the length of the valid data saved in the file is not necessarily the multiple of the sector, so the FAT file
system records the length of the valid data for the current file in the file directory information
FAT_DIR_INFO, namely the number of valid data bytes, known as the file size. The file length is always
less than or equal to the space that the file occupies.

After the data is written to the file, the file length may not change if the original data is covered. When the
file length is more than the original file length and becomes the appended data, it shall change (increase). If
the file length in the file directory information is not modified after the data is appended to the file, the FAT
file system will consider the data exceeding the file length invalid. Normally, the computer cannot read the
data exceeding the file length, even though the data actually exists.

If the data size is small or the data is discontinuous, the file length in the file directory information can be
immediately updated after the data is appended each time. However, if the data size is large and it is
necessary to continuously write the data, immediate update of file directory information will reduce the
efficiency, and frequent modification of file directory information will shorten the service life of the flash
memory in the USB flash disk (because the flash memory can be only erased for limited times). In this case,
the file length in the file directory information shall be updated after multiple sets of data is continuously
written or until the file is closed. The file length in the memory can be refreshed to the file directory
information of the USB flash disk file through the command CMD_FILE_CLOSE.

Although CH376 supports a single file of 1GB to the maximum, it is recommended that the length of a
single file shall not exceed 100MB in order to improve efficiency. Generally, several KB to several MB is
relatively normal. More data can be stored in multiple directories and files.

In general, it is necessary to realize the four levels on the left in the following figure for MCU or embedded
system to process the files of the USB flash disk. The internal structure hierarchy of the USB flash disk is
shown on the right. As CH376 not only is a general-purpose USB-HOST hardware interface chip, but also
has related USB underlying transport firmware program, the Bulk-Only protocol transport firmware program,
FAT file system management firmware program, containing 4 levels (parts marked in gray) on the left of the
following figure, so the actual MCU program only needs to send file management and read/write command.

http://wch.cn

CH376 Datasheet (I) http://wch.cn 32

File level API application
layer interface

FAT32/16/12 file system layer

SCSI/UFI/RBC command

layer
 Read and write USB flash disk

in sectors

Bulk-Only transport protocol
layer

 Bulk-Only transport protocol
layer

USB Basic transmission:
control/bulk

USB Basic transmission:

control/bulk
 USB

USB-Host hardware interface
chip

 USB-DEVICE hardware
interface chip

8.4. Rapid Application Reference Steps
Refer to the example program to call a subprogram that has packaged multiple commands. In the following
steps, the original command codes are used for reference only.

8.4.1. Initialize (the necessary step before performing any of the file operations)
① Command CMD_SET_USB_MODE,entering the USB-HOST mode or SD card host mode (mode 3)
② When waiting for USB flash disk or SD card to be connected, CH376 can detect the USB flash disk

automatically and generate an interrupt notification, or MCU sends the command
CMD_DISK_CONNECT to CH376 and periodically inquires, and the SD card shall be detected by
MCU.

③ Command CMD_DISK_MOUNT, initializing USB flash disk or SD card, and testing whether the disk is
ready, and retrying 5 times to the maximum after failure;

④ The above steps only need to be performed once. Unless the USB or SD card is disconnected and
reconnected, go to the step ②;

8.4.2. Read File
① Command CMD_SET_FILE_NAME + command CMD_FILE_OPEN, to open the file
② Command CMD_BYTE_READ + command CMD_RD_USB_DATA0 + command

CMD_BYTE_RD_GO for multiple times, to read the data
③ Command CMD_FILE_CLOSE, closing the file (optional operation)

8.4.3. Overwrite File (overwrite original data, and convert to appended data after exceeding the length
of original file)
① Command CMD_SET_FILE_NAME + command CMD_FILE_OPEN, opening the file
② Command CMD_BYTE_WRITE + command CMD_WR_REQ_DATA + command

CMD_BYTE_WR_GO for multiple times, writing the data
③ Command CMD_FILE_CLOSE. Set the parameter to 1, close the file and allow to update the file length

automatically

8.4.4. Append Data to Existing File
① Command CMD_SET_FILE_NAME + command CMD_FILE_OPEN, opening the file
② Command CMD_BYTE_LOCATE. Set the parameter to 0FFFFFFFFH, and move the file pointer to the

end of the file

http://wch.cn

CH376 Datasheet (I) http://wch.cn 33

③ Command CMD_BYTE_WRITE + command CMD_WR_REQ_DATA + command
CMD_BYTE_WR_GO for multiple times, writing the data

④ Command CMD_FILE_CLOSE. Set the parameter to 1, close the file and allow to update the file length
automatically

8.4.5. Create New File and Write Data
① Command CMD_SET_FILE_NAME + command CMD_FILE_CREATE. Create a file
② Command CMD_BYTE_WRITE + command CMD_WR_REQ_DATA + command

CMD_BYTE_WR_GO for multiple times, to write the data
③ Command CMD_FILE_CLOSE. Set the parameter to 1, close the file and allow to update the file length

automatically

8.4.6. Read File First and Then Rewrite File
① Command CMD_SET_FILE_NAME + command CMD_FILE_OPEN, to open the file
② Command CMD_BYTE_READ + command CMD_RD_USB_DATA0 + command

CMD_BYTE_RD_GO for multiple times, to read the data
③ Command CMD_BYTE_LOCATE. Set the parameter to 0, and move the file pointer to the head of the

file
④ Command CMD_BYTE_WRITE + command CMD_WR_REQ_DATA + command

CMD_BYTE_WR_GO for multiple times, to write the data
⑤ Command CMD_FILE_CLOSE. Set the parameter to 1, close the file and allow to update the file length

automatically

8.4.7. Append data if the file already exists, and create a new file and then write data if the file does
not exist
① Command CMD_SET_FILE_NAME + command CMD_FILE_OPEN. Open the file. If

ERR_MISS_FILE is returned, it will indicate that the file does not exist, go to the step ③
② Command CMD_BYTE_LOCATE. Set the parameter to 0FFFFFFFFH, move the file pointer to the end

of the file, and then go to the step ④
③ Command CMD_FILE_CREATE. Create a file
④ Command CMD_BYTE_WRITE + command CMD_WR_REQ_DATA + command

CMD_BYTE_WR_GO for multiple times, writing the data
⑤ Command CMD_FILE_CLOSE. Set the parameter to 1, close the file and allow to update the file length

automatically

8.4.8. Modify filename, file date/time, file length and other file directory information. Please refer to
the relevant description in EXAM10.
① Command CMD_SET_FILE_NAME + command CMD_FILE_OPEN, opening the file
② Command CMD_DIR_INFO_READ. Set the parameter to 0FFH, and read the file directory information

into the memory
③ Read the original file directory information through the command CMD_RD_USB_DATA0
④ Command CMD_DIR_INFO_READ. Set the parameter to 0FFH, and read the file directory information

into the memory
⑤ Write the new file directory information through the command CMD_WR_OFS_DATA
⑥ Command CMD_DIR_INFO_SAVE, saving the file directory information
⑦ Optional. Command CMD_FILE_CLOSE, setting the parameter to 0, closing the file and forbidding to

update the file length automatically

8.4.9. Create Subdirectory (Folder) (please refer to the description in EXAM9)
① Command CMD_SET_FILE_NAME + command CMD_DIR_CREATE, creating a new subdirectory

http://wch.cn

CH376 Datasheet (I) http://wch.cn 34

(folder)
② Command CMD_FILE_CLOSE, setting the parameter to 0, closing the file and forbidding to update the

file length automatically

8.4.10. Process Lowercase and Long Filenames (refer to the description in EXAM11)

8.4.11. Search and Enumerate Filenames, Enumerate All Files (please refer to the description in
EXAM13)

8.4.12. For master-slave switching, communication with the computer, USB flash disk or SD card
file read and write, please refer to the instructions in EXAM0.

8.5. USB Device Application
Please refer to the datasheet CH372DS1.PDF for CH372 chip and its application information.

http://wch.cn

	1. Overview
	2. Features
	3. Package
	4. Pins
	5. Commands
	5.1. CMD_GET_IC_VER
	5.2. CMD_SET_BAUDRATE
	5.3. CMD_ENTER_SLEEP
	5.4. CMD_RESET_ALL
	5.5. CMD_CHECK_EXIST
	5.6. CMD_SET_SDO_INT
	5.7. CMD_GET_FILE_SIZE
	5.8. CMD_SET_FILE_SIZE
	5.9. CMD_SET_USB_MODE
	5.10. CMD_GET_STATUS
	5.11. CMD_RD_USB_DATA0
	5.12. CMD_WR_HOST_DATA
	5.13. CMD_WR_REQ_DATA
	5.14. CMD_WR_OFS_DATA
	5.15. CMD_SET_FILE_NAME
	5.16. CMD_DISK_CONNECT
	5.17. CMD_DISK_MOUNT
	5.18. CMD_FILE_OPEN
	5.19. CMD_FILE_ENUM_GO
	5.20. CMD_FILE_CREATE
	5.21. CMD_FILE_ERASE
	5.22. CMD_FILE_CLOSE
	5.23. CMD_DIR_INFO_READ
	5.24. CMD_DIR_INFO_SAVE
	5.25. CMD_BYTE_LOCATE
	5.26. CMD_BYTE_READ
	5.27. CMD_BYTE_RD_GO
	5.28. CMD_BYTE_WRITE
	5.29. CMD_BYTE_WR_GO
	5.30. CMD_DISK_CAPACITY
	5.31. CMD_DISK_QUERY
	5.32. CMD_DIR_CREATE
	5.33. CMD_SEC_LOCATE
	5.34. CMD_SEC_READ
	5.35. CMD_SEC_WRITE
	5.36. CMD_DISK_BOC_CMD
	5.37. CMD_DISK_READ
	5.38. CMD_DISK_RD_GO
	5.39. CMD_DISK_WRITE
	5.40. CMD_DISK_WR_GO

	6. Functional Specification
	6.1. Communication Interfaces of MCU
	6.2. Parallel Interfaces
	6.3. SPI
	6.4. Asynchronous Serial Interface
	6.5. Other Hardware

	7. Parameters
	7.1. Absolute Maximum Value
	7.2. Electrical Parameters
	7.3. Timing Parameters
	7.4. Parallel Port Timing Parameters
	7.5. SPI Timing Parameters

	8. Application
	8.1. Application of USB Flash Disk, 5V Power Supply
	8.2. Application of SD card and USB Flash Disk, 3.3V Power Supply
	8.3. Application Basis
	8.4. Rapid Application Reference Steps
	8.4.1. Initialize (the necessary step before performing any of the file operations)
	8.4.2. Read File
	8.4.3. Overwrite File
	8.4.4. Append Data to Existing File
	8.4.5. Create New File and Write Data
	8.4.6. Read File First and Then Rewrite File
	8.4.7. Append data if the file already exists, and create a new file and then write data if the file does not exist
	8.4.8. Modify filename, file date/time, file length and other file directory information.
	8.4.9. Create Subdirectory (Folder)
	8.4.10. Process Lowercase and Long Filenames
	8.4.11. Search and Enumerate Filenames, Enumerate All Files
	8.4.12. For master-slave switching, communication with the computer, USB flash disk or SD card file read and write, please refer to the instructions in EXAM0.

	8.5. USB Device Application

