
Published on learn.parallax.com (http://learn.parallax.com)

Home > Propeller BOE Tutorials > Getting Started with Propeller Board of Education

Get Started with the Propeller Board of
Education

If you just got your Propeller Board of Education and you are new to Spin programming, this is the
place to start! Beginner-friendly objects are provided for every activity — just download the code and
go!

1 Install the Software
This page will guide you through installing and configuring the Propeller Tool software.

Download the Software
You will need a computer with Windows 2K or newer and Internet Explorer 7 or newer.

Go to www.parallax.com/PropellerTool [1] and download the latest version of the software.

Install the Propeller Tool
Run the installer you just downloaded, and accept all default settings.

Important! On the Install Optional Driver step, make sure to leave
the checkbox checked for the "Automatically install/update driver"
feature.

Run the Software
When you double-click the Propeller Tool software link that the installer placed on your
desktop for the first time, it will ask you about file associations. Click Yes.

Double-click the Parallax Serial Terminal icon to open it too.

Connect the Hardware
Connect your Propeller BOE to your PC’s USB port.

 Wait while Windows sets up the USB driver.

 Set the 3-position switch to Position-1 and check for a green light.

Configure the Software
Click the Run menu and select Identify Hardware to find out what COM port your Propeller
BOE is connected to.

Set your Parallax Serial Terminal with your Propeller BOE’s COM port.

2 LED Light Control
The Propeller microcontroller has 32 input/output pins. It can be programmed to set these I/O pins to
certain output voltages and to monitor for certain input voltages. In this lesson, we'll connect some of
these I/O pins to light emitting diodes (LEDs) that are built into the Propeller Board of Education.
Then, we'll use Spin programs to control the Propeller I/O pin voltages, and so make the LEDs blink
on and off.

Download: 2. LED Light Control Spin Code [2]

Save the zip archive file to your desktop, extract it to a folder, and open it.

Follow the links below to continue with the lesson.

LED Light Control

Blink a Light
The Propeller microcontroller has 32 input/output pins, abbreviated "I/O" pins. The Propeller chip can
be programmed to set these I/O pins to certain output voltages and monitor for certain input voltages.
(Voltage is abbreviated V.) In this first activity, we’ll connect a light emitting diode circuit (abbreviated
LED) to an I/O pin, and then write a program that makes the Propeller chip alternately supply 3.3 V
and 0 V to the I/O pin. The result will be that the light in the LED circuit will alternately turn on and off.

Build a Test Circuit
It takes one wire to connect a Propeller I/O pin to one of the PropBOE’s built-in LED circuits.

Take a jumper wire and plug one end into the socket labeled P9, and plug the other end into
the socket labeled H.

The figure shows how the components in the circuit schematic relate to the PropBOE. The LED is the
tiny component just to the left of the H label, and to the left of the LED is a resistor with a value of 240
Ω. The ohm is a measure of how strongly the device resists current, and it’s abbreviated with the
Greek letter omega Ω.

Download and Run a Test Program
Before writing and modifying programs, let’s try a simple test program and make sure the light blinks.

Download 02_Blink_Light_Examples.zip, and for now, save it to your Desktop.

Extract the archive to a folder.

Open the folder. (Make sure you are opening the folder and not the zip file.)

Open and Run First Example Program

Find and double-click 1 Blink Light.spin. It should automatically open into your Propeller Tool
software.

Click Run, then point at Compile Current.

In the Compile Current submenu, click Load EEPROM. (F11 is the shortcut for loading your
program into EEPROM.)

Check your board for a yellow blinking light.

How the Blinking Light Program Works

Spin Objects

Files that contain Spin language are called objects. Our example program is in a file named “1 Blink
Light.spin”. This object uses code in two other objects, one named “Input Output Pins.spin” and
another named “Timing.spin”. These are called user library objects, and they contain blocks of code
called methods that your program can use, almost like Spin commands. It’s kind of like having files
that give the Spin language custom "commands" to get any type of job done.

IMPORTANT: Your library objects have to either be in the same
folder with your program-object, or in the Propeller Library Folder
(typically C:\Program Files\Parallax Inc\Propeller Tool v1.3\Library).

Library objects have built-in documentation that shows you how to use their methods like commands
in your program. Let’s take a look at the documentation in the Input Output Pins object.

Click the Input Output Pins object in the Propeller Tool’s top-left Object View windowpane.
The file will automatically open in another tab. (If the panes on the left are not visible, click
File and select Show Explorer.)

Click the Documentation radio button to view the object’s documentation.

Scroll down and check out the list of methods the object has — they all begin with "PUB." This
list will be under the heading Object “Input Output Pins” Interface. Note that it has High and
Low methods. (Your program used these.)

Scroll down further, and you’ll find the High and Low method documentation, which explains
how to use it in your code.

Repeat this process with the Timing object. Open it and look up the Pause method.

TIP: You can click, hold and drag a tab off the editor so that you can
view it in a separate window while you write your code.

Inside the Code
Your program has to tell the Propeller Tool what objects it’s going to use. All it takes is a block of code
labeled OBJ. Inside this block, give each object a nickname, followed by a colon, and then the actual
filename in quotes. Then, in your program, you will use the object by its nickname.

In your code, you can use an object's method like a command by using its nickname, then a dot, then
the method name. This is a kind of "method call" and will be referred to as such. In this example, the
nickname for the Input Output Pins object is "pin." So, to call its High method and pass its pin
parameter the value 9, you would use pin.High(9).

This code example also has a Spin language command: repeat. The repeat command can make
the Propeller chip execute one or more lines of code containing commands, expressions and/or
method calls over and over again. You have to put the lines of code directly below the repeat
command, and indented further than it is. The next line of code that’s at the same level of indentation
as the repeat command will not be part of the loop.

The repeat command has lots of variations for controlling the number of times the loop is repeating,
keeping track of an index value, and conditions for repeating. We’ll try them all out later. For now, let’s
focus on experimenting with parameters in calls to the Timing object’s Pause method.

Blink the Light Faster
Before making any changes to your code, it’s best to save your program with a new name.

Click File and select Save As…

Type “2a Blink Light Faster” into the Filename field and click Save.

The Timing object's Pause method has a duration parameter — a value that says how long to pause
for. All you have to do to make the light blink faster is pass a smaller value to this duration parameter.
Let’s try 100.

Change the parameter value you’re passing to the Timing object’s Pause method from 200 to
100 in both method calls, as shown in the picture.

Run the modified program, and then Press the F11 key (a shortcut to Run -> Compile).

Verify that the light blinks twice as fast.

Save your work, then save your file under another name. To make it easier to find later, start
the filename with 2b.

Try passing the Timing object’s Pause method different duration values. How fast can you
make the light blink? What happens if you use different values for each method call?

Individual vs Group I/O Operations
The Input Output Pins.spin object can also control multiple I/O pins and groups of I/O pins.

Modify the Circuit
Add seven more jumper wires to build the circuit shown here:

Control a Different Light
The example program “3 Blink Different Light.spin” makes the blue light next to the B1 label blink.

Open 3 Blink Different Light.spin.

Load the program into the Propeller chip with F11.

Verify that the blue light next to the B1 label blinks.

How to Select a Light
Just as the Timing object’s Pause method expects a number of ms to pause, the Input Output Pins
object’s High and Low methods expect an I/O pin number. This number determines which I/O pin
sends a high (3.3 V) signal to turn the light on, or a low (0 V) signal to turn it off. This example
program passes the value 10 to pin.High and pin.Low. The previous example program used the
value 9. So, instead of sending high and low signals to P9, this program sends them to P10. You used
a jumper wire to connect P10 to the B1 socket next to the blue LED circuit.

Save your program under a different name, that starts with 3a.

Try different values (from 8 to 15) in the pin.High and pin.Low method calls.

Group I/O Operations
The Input Output Pins object also has methods for controlling, monitoring, and configuring continuous
groups of I/O pins. For example, it has both a High method, and a Highs method. Likewise, there
are also Low and Lows methods. The fact that it’s plural (ends in s) is your clue that you can use it to
set a group of I/O pins high/low. One of Input Output Pins' more useful methods for group I/O control
is Outs. The Outs method allows you to use a binary value (a number comprised of only ones and
zeros) to control the high/low state of each I/O pin in a group. Let’s try it.

Examine the Input Output Pins object in Documentation view again.

This time, look up the Outs method.

Next, open “4 Light Display.spin” with the Propeller Tool software.

Load the program into the Propeller chip with F11, and verify that it makes the lights blink in
an alternate on/off pattern.

How the Spin Code Works
The Input Output Pins object’s Outs method expects three numbers: the first pin number in the group
of I/O pins, the last pin number, and a binary number that describes the high-low pattern. In Spin, you
indicate a binary number with a percent sign in front, like this: %01010101. Here’s what that does to
the high/low states of the group of I/O pins starting with P15 and ending with P8.

Your Turn – A Different Pattern
Let’s try turning 4 lights that are next to each other on, while the other four are off. Your binary values
would have to be %11110000 and %00001111.

Try it!

3 Spin Programming
This next set of activities will show you how to write programs that perform simple, common
programming tasks. Examples include displaying messages and values, counting, calculations,
decision making, and using objects instead of writing lots of code from scratch.

All example programs will display results with the Parallax Serial Terminal software that comes
bundled with the Propeller Tool.

Download: 3. Spin Programming Code [3]

Extract the zip archive to a folder on your desktop, and open it.

Follow the links below to begin the lesson.

Hello from your Propeller

Let's start with a few simple example programs that make your Propeller Board of Education's
microcontroller send some simple messages to your PC. On the PC side, we'll use the Parallax Serial
Terminal software that accompanies the Propeller Tool to receive and display those messages.

Open and Run First Example
Find and double-click 1 Hello Propeller.spin. It should automatically open into your Propeller
Tool software.

If you closed your Parallax Serial Terminal, you may need to re open it and set the Com Port
again. See the Run the Software and Configure the Software sections in Lesson 1.

Click Run, then point at Compile Current, and then click Load EEPROM. (F11 is the shortcut
for loading your program into EEPROM.)

As soon as you see the Programming EEPROM" message, click the Enable button on the
Parallax Serial Terminal's bottom right corner.

More About Library Objects
The "Hello!" example uses a new pair of library objects, named "Propeller Board of Education" and
"Parallax Serial Terminal Plus."

Code Block and Object and Method Review
Here is a second look at declaring objects and using their methods in your program. This program
declares the Propeller Board of Education object and gives it the nickname system. Then, it calls the
Propeller Board of Education's Clock method with system.Clock(80_000_000). This program
also gives the Parallax Serial Terminal Plus object the nickname pst and then calls its Str method,
which sends the "Hello" message to your computer. Str is one of the many methods Parallax Serial
Terminal Plus offers for communication with your computer.

Examine the the steps in the figure carefully; you will be using them to make your own
programs.

Did you know?

You can use system.Clock to set the Propeller chip's clock to
these freuqencies:40 MHz, 20 MHz, 10 MHz, and 5 MHz. If you don't
set the Propeller chip's system clock, it will default to a 12 MHz
internal clock that's not very accurate. It's great for some applications,
but not precise enough for serial communication.

The “Parallax Serial Terminal Plus” object uses another one of the
Propeller chip’s eight core processors (called cogs) to communicate
with your PC. The pst.Str method call passed the "Hello!"
message to the Parallax Serial Terminal object, and code in that
object passed it to a different cog that transmitted each character to
your computer.

New Tip: View Object Documentation in
another Window
It really helps to be able to look at an object's methods in a different window while you are writing your
code. Here's how to do that:

Click Parallax Serial Terminal Plus in the upper-left Object View pane to open the Parallax
Serial Terminal Plus object in a new tab.

Click the Documentation radio button to change to Documentation view.

Click and hold the Parallax Serial Terminal Plus tab, and drag it off the editor to open it into a
new window.

Now, you can check the Parallax Serial Terminal Plus Object Interface and method documentation in
a separate window while you write your code. It's also a good idea to arrange the windows so that you
can view them both on your screen at the same time. This will make it a lot easier to find methods,
read about them, and add them to your code.

Arrange the windows so that you can see both your example program and the Parallax Serial
Terminal Plus object (which is in Documentation view).

Examine the list of methods in the Object “Parallax Serial Terminal Plus” Interface. Do some
of the names look familiar? Since Str is short for string and the method sends a string, what
do you think NewLine does? How about Dec?

Answering the questions about the Str, Newline, and Dec methods is easy, just scroll down and
read the documentation for each one. Each method is fully documented below the Method Interface,
which is just a list of their names.

Scroll down and find the Str, NewLine, and Dec method documentation.

Read them, and then let’s try using the NewLine method to display a string on a second line.
We’ll also use the Dec method in the next activity.

What's a "Zero Terminated String"?
The expression String("Hello!") stores these characters in program memory, with a zero at the
end.

Click the "1 Hello Propeller" tab in the Propeller Tool.

Click Run -> Compile Current -> View Info... F8.

The Object Info window that appears has a Show Hex button. It should resemble this one.
Find the Hello characters.

Display a Value
We’ve already checked the Parallax Serial Terminal Plus object’s NewLine and Dec methods, so
let’s try it out.

Save your example program under a new name, like “1a Hello Propeller.spin”

Double check the documentation for NewLine and Dec.

Change the “Hello!” text to “The number is:”

Add two new lines after the pst.Str call:

pst.NewLine
pst.Dec(42)

Run the modified program

Tip: use the F11 key, and remember to click the Parallax Serial
Terminal’s Enable button right away.

Count to Ten
Let’s try a program that counts to ten.

Go back to the folder you unzipped and double-click “2 Count to Ten.spin” to open it.

While in the Propeller tool, press F11 to load the program into the Propeller chip.

Make sure to click the Parallax Serial Terminal’s Enable button right away.

Remember, you don’t have to wait until the program is finished loading.

Now, what if you want to make the program count from 8 to 15 instead? In case you're wondering why
we would want to count from 8 to 15, try the Project at the bottom of this page.

The first step is to save the file to a new name before making any changes.

In the Propeller Tool software, click File and select Save as

For a new filename, use "2a Count from Eight to Fifteen.spin".

Now, modify the program and run it to test the effect.

Change repeat i from 1 to 10 to repeat i from 8 to 15.

Run the program (load it into the Propeller chip by pressing F11 and then click the Parallax
Serial Terminal's Enable button).

In the Propeller Tool, click File -> Save (or CTRL+S) to save your work.

You can also modify that line of code to make it count in steps, let's try steps of 2.

Save the program under a new name again. This example will use "2b Count in Steps of
2.spin".

Change repeat i from 8 to 15 to repeat i from 8 to 15 step 2.

Run the program and observe the effect.

Your Turn: More variations on counting
If you don't need any kind of index in your loop, you can just use repeat and a number. For
example, to make code that's in the repeat loop execute eight times, use:

repeat 8

For example, if you just want to print eight copies of a "Hello!" message, you could use:

repeat 8
pst.Str(string("Hello!"))
pst.NewLine

Try it!

Project: Make a Bar Graph
Use what you have learned about indexed counting to go back to and make a bar graph using the
circuit from the Individual vs. Group I/O Operations section of Lesson 2.

If you have already removed the wires that controlled the Lesson 2 LEDs, go back to
Individual vs. Group I/O Operations and rebuild the circuit.

Start with Blink Different Light.spin. It should be in the 02_Blink_Light_Examples folder.

Save it under a new name, then add a VAR block and declare an index variable, like this:

VAR long i

Your code in the Blink method should look like this:

PUB Blink
repeat i from 8 to 15

pin.High(i)
time.Pause(100)

repeat i from 15 to 8
pin.Low(i)
time.Pause(100)

Run the example and observe the effect. Note also that you can count downward with
repeat i from 15 to 8.

Simple Math Problems
This activity uses Propeller to do math problems, by entering numbers and displaying answers with
the Parallax Serial Terminal.

The example program "03 Solve Math Problems.spin" prompts you to "Enter value a", and waits for
you to type a value into the Parallax Serial Terminal's Transmit windowpane and press the Enter key.
It then asks you to "Enter value b", and you'll have to type another value and press Enter. It then adds
the two values and displays the sum.

Double-click "3 Solve Math Problems.spin" to open it into the Propeller Tool.

If you want to hide the Explorer pane so that your Propeller Tool matches the picture, click File
and Select Hide Explorer.

Press the F11 key to load the program into the Propeller chip.

Click the Parallax Serial Terminal's Transmit windowpane.

Follow the prompts, typing values and pressing enter after each one.

Verify that it displays the sum of the two values you entered.

How it Works
The pst.DecIn method call waits for you to type a value into the Parallax Serial Terminal's Transmit
windowpane. When you press Enter, it figures out the decimal equivalent of the characters you typed,
and returns that value. So, the expression a := pst.DecIn waits for you to type that value and
press Enter. As soon as you do, it copies the value you typed into a variable named a. The command

b := pst.DecIn copies a second value into a variable named b. Then, c := b + a adds the two
values together and stores the result in the variable named c. After that, the program displays the
result with pst.Dec(c).

Your Turn: Try Different Operators
There are lots of math operators you can use in place of the + in c := a + b. For example, you
could use the subtract, multiply, divide, or remainder operators (-, *, /, //).

Save 3 Solve Math Problems.spin as 3a Test Subtraction.spin.

Change c := a + b to c := a - b.

Change pst.Str(String("a + b = ")) to pst.Str(String("a - b =")).

Run the modified program and verify that it now subtracts b from a.

Repeat for the multiply, divide, and remainder operators.

Learn More about Operators
The Spin language has more operators you can use. The Propeller Manual has more info.

In the Propeller Tool Software, click Help and select Propeller Manual.

Look up Operators and Binary Operators in the index and read about them.

Look up Binary Operators in the index, and take a look at the list.

Note: The five operators we just experimented with are examples of
binary operators. They are called binary operators because they
perform an operation on two values.

Challenge!
Modify Solve Math Problems.spin so it divides two numbers and then displays both the result
and the remainder. Be sure label the remainder value in the display!

Simple Decisions
The “4 Make Decisions.spin” example program prompts you to enter values into the Parallax Serial
Terminal’s Transmit windowpane. After you press Enter, the program decides whether the number is
positive, negative, or zero.

Open “4 Make Decisions.spin” and use F11 to load it into the Propeller chip.

Try typing various negative and positive values into the Parallax Serial Terminal’s Transmit
windowpane. Remember to press Enter after each value.

Verify that the program correctly identifies negative, positive and zero values.

How it Works
The program copies the number you entered to a variable named value with value :=
pst.DecIn. Then, it analyzes the value with an if…elseif…else block of code. It starts by
checking if value > 0, in which case, it sends the message “Positive” and skips the rest of the tests.
If value is not greater than zero, it moves on to check if value < 0. If it is, it prints “Negative” and
skips any more decision making. If it’s not less than zero either, it moves on to the else statement,
which covers the rest of the possibilities. In this case, the only other possibility is that the value
variable is zero.

Your Turn
You could accomplish the same thing with three different IF commands. Try this:

Save 4 Make Decisions.spin as 4a Make Decisions.spin.

Replace this code:

if value > 0
pst.Str(string("Positive"))

elseif value < 0
pst.Str(string("Negative"))

else
pst.Str(string("Zero"))

...with this code

if value > 0
pst.Str(string("Positive"))

if value < 0
pst.Str(string("Negative"))

if value == 0
pst.Str(string("Zero"))

Test the modified program.

Can you modify it to test if the value is greater than 100, less than -100 or between the two
values?

Learn More about IF
Remember, you can view the Propeller Manual from the Propeller Tool software by clicking Help and
selecting Propeller Manual.

Open the Propeller Manual and use the index to look up the IF command.

Store and Retrieve Values
Need to store a list of values? Use an array variable. Try this program out.

Open “5 Store and Retrieve Values.spin” with the Propeller Tool.

Use F11 to load it into the Propeller Chip, and remember to click the Parallax Serial Terminal’s
Enable button while the program is still loading.

Follow the prompts, and type values of your choosing into the Parallax Serial Terminal’s
Transmit windowpane.

Verify that it lists the values you entered after I = 5.

How it Works
In the VAR block, the program declares long i, val[6]. This declares 7 variables: i, val[0],
val[1], val[2], val[3], val[4], and val[5]. The program then uses a repeat loop with i as
its index to successively load each variable with a value you type into the Parallax Serial Terminal’s
Transmit windowpane. After that, a second repeat loop uses the same technique to display all the
values that are stored.

Your Turn
How about displaying the values in reverse order? Simply swap the 0 and 5 in the last repeat loop.

Try it!

Display Fun
“6 Display Fun.spin” displays a line of asterisks, starting at the lower-left and ending at the upper-right.

Open “6 Display Fun.spin”, load it into the Propeller chip with F11, and click the Parallax Serial
Terminal’s Enable button to view the output.

How it Works
This program is combines many of the other things we’ve learned in this lesson. It uses two more
methods from the Parallax Serial Terminal Object: Position and Char, multiply and subtract
operators, and indexed counting to display a line of asterisk characters in the Parallax Serial Terminal.

Open Parallax Serial Terminal Plus and view it in documentation mode.

Read up on the Char and Position methods.

Examine the rest of the code, and make a narrative of how it works.

Your Turn
Modify the program so that it draws a large X with asterisks. You’re half way there already, but
it might take some tinkering.

More Display Fun
You can make large, predefined lists with DAT blocks. You will see numerous applications of this in
the lessons. This first application is simply storing some character art.

Open “7 More Display Fun.spin”, load it into the Propeller chip with F11, and click the Parallax
Serial Terminal’s Enable button to view the output.

How it Works
Unlike the String operator, which stores a list of characters in program memory, the DAT block is
more like a pre-defined variable array. The values are loaded into RAM, and can even be modified
while the program is running, much like an array.

Remember that the Parallax Serial Terminal Plus object’s Str method’s stringptr parameter
expects the memory address of a zero-terminated string. Take a look at the last value in the DAT
block, it’s zero. Also, take a look at the pst.Str call. It’s pst.Str(@Win). The @ opereator in @Win
gives the Str method the memory address of the first byte (a space character) at the beginning of
the rows of characters. So, the Str method does its job of fetching and transmitting characters until it
runs into that zero at the end of the list.

Did you know? The 13 character code makes the Parallax Serial
Terminal’s cursor jump to the beginning of the next line.

Your Turn
You can also treat DAT blocks like arrays. For example, here is a loop that sends each character in
the DAT block, one at a time.

Save the program as 7a Send Characters.spin.

Add the variable i to the list of long variables in the VAR block. It should read long x, y,
i.

Replace pst.Str(@Win) with this loop:

repeat i from 0 to 275
pst.char(Win[i])

Project
Try adding a "YOU LOSE" unhappy face to the program.

Learn More about DAT
Look up DAT in the Propeller Manual’s index.

4 Pushbutton Monitoring
Pushbutton circuits are common in many appliances and inventions. This lesson introduces simple
pushbutton circuits and some techniques for monitoring them. It also demonstrates how to use
pushbutton state information to control LED light circuits. Of course, in place of the lights, your
inventions might instead have circuits with on/off motors, heating elements or other devices, but the
programming approach would be the same.

Download: 4. Pushbutton Monitoring Spin Code [4]

Unzip it to a folder, and open the folder.

Remember that you have to open programs from within the folder, not within the zip.

Follow these links for a guided tour through each example program and how it works.

Pushbutton Circuit
This circuit uses two of the LED circuits from Lesson 2, as well as a couple of pushbutton circuits built
onto the breadboard.

Build the circuit shown in the schematic with the aid of the wiring diagram.

Remember to always move the 3-position switch to position 0
before building or changing circuits on your board!

Schematic

Wiring Diagram

How it Works: Pushbutton Circuits
When the pushbutton is not pressed, the circuit applies GND (0 V) to the I/O pin. If the pushbutton is
pressed, the circuit applies 3.3 V to the I/O pin, and a small amount of current passes from the 3.3 V
connection, through the 10 kΩ resistor to ground. No current passes into P3 or P4 since they will be
set to input by the programs.

Test a Pushbutton
This program displays the state of the pushbutton connected to P3. It should display 1 while the button
is pressed, and 0 while it is not pressed.

Open “1 Test Pushbutton.spin” and use F11 to load it into the Propeller chip.

While the program is loading, click the Parallax Serial Terminal’s Enable button.

Press and hold the button down. The display should show a 1.

Release the button. The display should show a 0.

How it Works
Take a look at the OBJ block. The program is using library objects from both Lesson 1 and Lesson 2.
The program also declares a variable named state. The expression state := pin.In(3) takes
the value returned by the Input Output Pins object’s In method and copies it to the state variable.
The call to pst.Home places the cursor in the Parallax Serial Terminal’s top-left home position. Then,
pst.Bin(state, 1) displays the value of the state variable as a 1-digit binary number. Before
repeating the loop, time.Pause eats up 50 ms, which is mainly to make sure that the program
doesn’t send messages faster than it needs to.

Your Turn
It's pretty easy to modify this example program to test the pushbutton connected to P4.

Save the program under a new name, preferably starting with 1a. Like “1a Test
Pushbutton.spin”.

Change state := pin.In(3) to state := pin.In(4).

Retest the program, this time pressing and releasing the pushbutton connected to P4.

Learn More about pin.In
Take a look at the In method documentation in the Input Output Pins object.

In the Propeller Tool software, click Run -> Compile Current -> View Info… F8. (The F8 next
to the menu selection means that you can use the F8 key as a shortcut to this feature.)

Double-click Input Output Pins to open it. Then close the Object Info window.

The Input Output Pins object should be the active tab in your Propeller Tool software now.
Click the Documentation radio button.

Read the In method’s documentation. How does it relate to the example program?

Control a Light with a Pushbutton
This example program blinks the LED light circuit connected to P9 while the P3 button is pressed and
held. It will also blink the P10 LED light while the P4 button is pressed and held.

Load the program into the Propeller chip with the F11 key.

Press and hold the P3 pushbutton. Does the yellow LED labeled H blink?

How it Works
Since pin.In returns either a 1 or a 0, why not just use it as the condition in an if command? Like
this:

if pin.In(3) == 1
pin.High(9)

Did you know?

The := operator assigns a value or expression result on the right to
a variable on the left. The == operator makes a comparison
between the term on the left and the one on the right. If they are
equal, it returns TRUE (a 32-bit value that’s all 1s); otherwise, it
returns FALSE (the number 0).

An if command will execute its block of code if its expression
evaluates to anything that’s not FALSE. In other words, if the result is
not zero, it’ll run the code. If it is zero, it skips the code.

Your Turn
Get creative; there are a lot of parameters to play with in this program. You can change the blink rate
by adjusting time.Pause, the light by adjusting the pin.High and pin.Low parameters. You can even
make the light blink while the button is not pressed by changing if pin.In(3) == 1 to if pin.In
(3) == 0.

Try it!

Test Two Pushbuttons
Remember in Lesson 2 when you used the Input Output Pins object’s Outs method to control several
LEDs with one method call? Well, you can also monitor a group of pushbuttons with the Ins method
to monitor a group of I/O pins, connected to pushbuttons in this case.

Load “3 Test Two Pushbuttons.spin” into the Propeller chip with the F11 key.

Remember to click the Parallax Serial Terminal’s Enable button while the program is loading.

The left digit displays the state of the P4 pushbutton and the right digit displays the state of the
P3 pushbutton. Try the four possible combinations of pressed and not pressed and check the
values you see in the Parallax Serial Terminal.

How it Works.
The pin.Ins call makes the Input Output Pins object return a group of binary digits with 1s and 0s for
each I/O pin. Since the call was pin.Ins(4, 3), the call will return a 2-digit binary number with the P4
and P3 pin states.

The Parallax Serial Terminal’s Bin method displays binary numbers in the Parallax Serial Terminal.
The first parameter should contain the value to display, and the second one should contain the
number of digits to display. Since we know that there are two useful binary digits in the value the
pin.Ins(4, 3) call returns, we can make the Parallax Serial Terminal display just those two digits
with pst.Bin(states, 2).

Your Turn
If you swap the 3 and the 4 in the Ins method call, what happens to the relationship between the
digits displayed by the Parallax Serial Terminal and the buttons you press?

Save “3 Test Two Pushbuttons.spin” as “3a Test Two Pushbuttons.spin”.

Swap the 3 and the 4 in the pin.Ins call, and retest to find out how the display responds to
the buttons you press.

Learn More about Bin
Press F8 to display the Object Info.

Double-click the Parallax Serial Terminal Plus object to open it. Then close the Object Info
window.

The Parallax Serial Terminal Plus object should be the active tab in your Propeller Tool
software now. Click the Documentation radio button.

Read the Bin method’s documentation.

Control Two Lights with Pushbuttons
This example uses two pushbuttons to control two LED lights.

• Open and run the program "4 Control LIghts with Pushbuttons." It’ll load more quickly if you use
F10 instead of F11.

• Press and hold each pushbutton and verify that its corresponding light blinks.

How it Works
The line states := pin.Ins(4,3) copies the binary values that indicate the states of the P4 and
P3 pushbuttons to the states variable. Then, pin.Outs(10, 9, states) uses those values to
apply high/low voltages to the corresponding LED light circuits. (High is 3.3 V, Low is GND = 0 V.)
After a 0.1 second time.Pause, the pin.Outs(10, 9, %00) call turns both lights off. Another 0.1
second pause is required for the light to spend some time off as well as on to make it blink. Otherwise,
the light would appear to just stay on while you press the button.

Did you know?

F10 is a shortcut for Run -> Compile Current -> Load RAM. EEPROM
stores the program, even if you turn power off and back on or
press/release your board’s RST button. RAM does not.

EEPROM stands for Electrically Erasable Read Only Memory. RAM
stands for Random Access Memory. When the Propeller chip starts
up, if there isn’t a computer trying to download a program to it, it
copies the last program that was stored in EEPROM to RAM and
then starts running it.

Your Turn
What happens without the last time.Pause(100)? The light blinks, but it spends such a short time
off that the eye cannot detect it.

Save a copy of your program with a new name.

Place an apostrophe to the left of the last time.Pause(100) call, like this:

' time.Pause(100)

That removes it from the program, just like a code comment.

Expand Pushbutton Light Control
The program in the previous example isn’t very flexible. It doesn’t lend itself to adding extra code to do
custom jobs depending on which button is pressed. Here is a program that uses a case command to
do the same thing as the previous example. The difference here is that you can add more code to
each case.

Run Expand Pushbutton Light Control.spin and verify that it behaves the same as the
previous example program.

How it Works
The case statement takes a look at the states variable, and checks for one of the four possible
matches. When it finds a match, it executes the code that’s either next to it, or below and indented
from it. It only executes the case that matches the condition, then it skips to pin.Outs(10, 9, %
00).

Your Turn
Here is an example of a case statement that makes both lights blink alternately if both buttons are
pressed. If the P4 button is pressed, the P10 light blinks, and if the P3 button is pressed, the P9 light
blinks. If neither button is pressed, neither light blinks.

Save your program under a new name (perhaps starting with 5a).

Modify the case command as shown below.

Learn More about CASE
Case is a Spin command, so you can look it up in the Propeller Manual’s Index and read lots more.

In the Propeller Tool software, click Help and select Propeller Manual.

Look it up in the index, and read up on it.

5 Measure Voltage
Voltage is the electrical pressure that causes electric current to flow through a circuit. In this lesson,
you will experiment with both measuring and generating voltages. The common names for these
processes in electronics are analog to digital conversion and digital to analog conversion.

Download: 5. Voltage Measurements Spin Code [5]

Several of the user library objects in the Voltage Measurements Spin
Code package are works in progress. Please check the
documentation comments for more info.

Follow these links to start the lesson.

ADC and Potentiometer Circuit
The Propeller Board of Education has four sockets that are connected to an onboard analog to digital
converter chip. These sockets are labeled AD0, AD1, AD2, and AD3. In this activity, a potentiometer is
connected to three of these sockets, as shown below.

As you turn the potentiometer knob, the voltage at the terminal connected to AD0 will vary. You can
use the knob to adjust the voltage anywhere from 0 to 5 V. AD1 is connected to ground (GND), which
should measure 0 V, and AD2 is connected to the 3.3 V socket.

Use the schematic and wiring diagram to build the circuits.

The potentiometer terminal connected to AD0 is called its wiper terminal. As you turn the knob, a
contact connected to that terminal slides across a resistive element. 5 V is supplied at one end of the
resistive element and 0 V is supplied to the other end. As you turn the knob one way or the other, the
wiper slides across the resistive element, getting closer to either 5 V or 0 V.

Did you know?

Common abbreviations for analog to digital conversion are A/D
conversion and ADC. Common abbreviations for digital to analog
conversion are D/A conversion and DAC.

The value an A/D converter returns is an integer approximation of the
actual voltage. It’s called a quantized measurement.

Simple Analog to Digital Test
This first example displays the Propeller BOE’s analog to digital measurement of the potentiometer’s
wiper terminal voltage output. The A/D converter will supply the Propeller with a value that
corresponds to the voltage applied to AD0. The program stores this value in a variable, ad, and
displays it in the Parallax Serial Terminal. The ad value is the number of 1024ths of 5 V. For

example, in the figure below, the measurement is 927/1024ths of 5 V. That means the actual voltage
is V(AD0) = 5 V × 927 ÷ 1024 ≈ 4.53 V.

Open “1 Simple ADC Test.spin” and use F11 to load it into the Propeller chip.

While the program is loading, click the Parallax Serial Terminal’s Enable button.

Push the potentiometer down on the board as you adjust its knob so that it keeps electrical
contact.

Watch the Parallax Serial Terminal as you adjust the knob. The value of ad should vary from 0
to as high as 1023 as you turn the knob back and forth. It’ll get larger as you turn the knob in
one direction, and smaller as you turn it in the other direction.

Try a few more voltage calculations with 5 V × ad ÷ 1024.

How it Works
The PropBOE ADC object’s In method expects a channel from 0 to 3, and returns a value that the
expression ad := adc.In(0) copies to a variable named ad. When the In method gets called, the
code actually jumps into the PropBOE ADC object, finds its In method and starts executing it. When it
runs out of commands in the method, it returns.

The In method’s PUB declaration defines parameters the method needs to receive from the caller to do
its job, as well as defining what value it returns. The call:

PUB In(channel) : adcval | pointer, acks, chan

...means that the In method expects one parameter named channel, and that it will return the value
of a variable named adcval when it’s done. The variables to the right of the | symbol are called local

variables, and they use memory that the Propeller chip temporarily sets aside just while it’s executing
the method.

You can tell that adc.In(0) is a call to a method in another object because it starts with an object
nickname from the OBJ block, adc in this case.

The Display method call below it calls another method, but it’s not in another object, it’s right below
the Go method in the “1 Simple ADC Test” object. Display could also have one or more parameters
and a return value, but this time it doesn’t. When code in the Go method gets to the Display
method call, it jumps down to PUB Display and starts executing code until it runs out, which could
be the end of the file or the beginning of another PUB or PRI block.

Did you know?

A method can have more than one parameter, but it only returns a
single value. A method can be PUB (public) or PRI (private). A
public method can be accessed by a call from another object. A
private method can only be accessed within the same object. PRI is
used when a method helps other methods in the object do their jobs,
but a call from outside the object might result in unpredictable
behavior.

Your Turn

In the schematic, AD1 is connected go GND, 0 V. So a call to adc.In(1) should return 0. AD2 is
connected to 3.3 V, so it should return a value in the neighborhood of adc.In(2) = 3.3 V × 1024 ÷ 5
V ≈ 676.

Save the program under a new name, preferably starting with 1a. Like “1a Simple ADC
Test.spin”.

Change ad := adc.In(0) to ad := adc.In(1) and verify that result, it should be 0.
Repeat for ad := adc.In(2).

Learn More about PUB
The Propeller Manual has lots more info on PUB/PRI method blocks.

• In the Propeller Tool software, click Help and select Propeller Manual.
• Look up PUB in the index, and read about it.

Three Channel ADC Test
This program uses an indexing variable and a repeat loop to index through all three ADC channels.
Remember that AD0 is connected to the potentiometer, so it should change as you twist its knob. AD1
is grounded, so adc.In(1) should return zero, and AD2 is connected to 3.3 V, so adc.In(2)
should return about 676.

Open “2 Three Channel ADC Test.spin” and use F11 to load it into the Propeller chip.

While the program is loading, click the Parallax Serial Terminal’s Enable button.

Verify that all three values display correctly.

How it Works
The loop:

repeat I from 0 to 2
adc[i] := adc.In(i)

...repeats three times.

• The first time through, i is 0, so adc[i] := adc.In(i) becomes adc[0] := adc.In(0).
• The second time through, i is 1, so adc[i] := adc.In(i) becomes adc[1] := adc.In
(1).

• The third time through, i is 2, so so adc[i] := adc.In(i) becomes adc[2] := adc.In
(2).

. …and that’s how it loads all three adc array variable elements.

Note that the Display method has been modified and uses a loop to display the various channel
values.

Your Turn
You can display all three channels by changing repeat i from 0 to 2 to repeat i from 0
to 3.

Try it!

Voltmeter Test
Objects can be written for convenience. The Voltmeter object makes it so that you can use AD0…AD2
to probe your circuits and take voltmeter measurements. With voltage measurements, we’ll expect to
see the potentiometer’s wiper voltage for AD0, 0 V for AD1 and a value that’s pretty close to 3.30 V for
AD2.

Open “3 Voltmeter Test.spin” and use F11 to load it into the Propeller chip.

While the program is loading, click the Parallax Serial Terminal’s Enable button.

Verify the measurements.

Slowly adjust the potentiometer’s knob from one end of its range of motion to the other and
keep an eye on AD0 as you do so.

How it Works
Remember that the Parallax Serial Terminal’s Str method expects the starting address of a zero-
terminated string. The PropBOE Voltmeter object’s FloatStr method returns the starting address of
a zero-terminated string that contains the character representation of the floating-point voltage. At the
end of the string are two ASCII control characters (11 and 13) followed by the zero terminator.

Did you know?

ASCII control character (11) = Clear to End of Line. This helps avoid
phantom characters when the new value has fewer characters than
the previous one. ASCII control character (13) = New Line. In the
Parallax Serial Terminal you can click Prefs -> Function to view the
supported ASCII Control Characters.

Learn More about the PropBOE Voltmeter
Object
PropBOE Voltmeter has methods that return the raw A/D integer value, a single precision floating
point value, or the strings we experimented with here. The single-precision, floating-point value is
useful for additional processing with the FloatMath object, which is in the Propeller Library.

In the Propeller Tool software, click Run -> Compile Current -> View Info… (shortcut key F8).

Double-click the PropBOE Voltmeter object to open it. Then close the Object Info window.

The PropBOE Voltmeter object should be the active tab in your Propeller Tool software now.
Click the Documentation radio button.

Read the In method’s documentation. How does it relate to the example program?

Simple Digital to Analog Test
Digital to Analog conversion is a reverse of the Analog to Digital Conversion process. While A/D
conversion measures a voltage and spits out a number, D/A conversion takes a number, and
generates the corresponding voltage.

On the Propeller Board of Education, the Propeller microcontroller’s P26 and P27 I/O pins are
connected to D/A converter circuitry that can take a number from 0 to 255 and generate a voltage
from 0 to almost 3.3 V. (The values your program passes to dac.Out will be a number of 256ths of
3.3 V.) There are two LEDs below the DA0 and DA1 sockets that indicate the voltage. They get
brighter with higher voltages and dimmer with lower ones. The sockets also supply the D/A voltages
so that you can connect them to circuits on your board, but we’ll try that later.

Don’t worry about making any changes to your circuit, we’ll just use the P26 and P27 voltage
indicator lights below the DA0 and DA1 sockets for this activity.

The “4 Simple DAC Test” object counts from 0 to 255 in steps of 4, and uses those values to set the
DA0 and DA1 socket voltages.

Open “4 Simple DAC Test” and use F11 to load it into the Propeller chip.

While the program is loading, click the Parallax Serial Terminal’s Enable button.

Verify that the P26 light gets brighter as DA[0] counts upward.

Verify that the P27 light gets dimmer as DA[1] counts downward.

How it Works
The PropBOE DAC object is nicknamed dac, and its Out method expects two parameters, channel
and dacval. A call to dac.Out(0, 128) sets the DA0 to 3.3 V × 128 ÷ 256 ≈ 1.65 V, and the P26
LED will be about half of full brightness. A call to dac.Out(1, 64) would set the DA1 socket
voltage to 3.3 V × 64 ÷ 256 ≈ 0.825 V.

Instead of discrete values, the code uses da[0] := da[0] + 4 and da[1] := da[1] – 4 to
make the da[0] array variable element count up in steps of 4 and da[1] count down in steps of 4.
Every 70 or so milliseconds, the values stored in da[0] and da[1] are updated, and so are the
dac.Out calls that set the DA0 and DA1 socket output voltages.

Did you know?

The assignment form of the add operator is +=, and you can use it to
simplify some expressions. For example, you can substitute da[0]
+= 4 in place of da[0] := da[0] + 4. You can even replace the
first two commands in the repeat loop with dac.Out(0, da[0]
+=4).

Your Turn

The four lines after the system.Clock call set each set voltages at DA0 and DA1. The fourth line is a
repeat loop with noting below or indented from it. So the code gets stuck there and does nothing
else.

Save the program under a new name, something like “4a Simple DAC Test.spin”.

Add the four lines of code shown below.

Run the code. It should set the P27 LED below DA1 to ¾ brightness and the P26 LED below
DA0 to ¼ brightness.

Let’s also try the code technique using +=, shown in the Did You Know box.

Reopen “4 Simple DAC Test.spin” and save it as “4b Simple DAC Test.spin”.

Comment the four lines shown below by placing an apostrophe to the left of each one.

Add the two lines (each replaces a pair of lines that you commented).

Run the code. The lights should still do the same bright/dim pattern the original one gave you.

Learn More about Operators: + vs +=
The Propeller Manual explains the difference between using + and +=.

In the Propeller Tool software, click Help and select Propeller Manual.

Look up binary operators in the index.

Follow the reference to the page that explains + and +=. It explains the operator in its binary +
and assignment += forms.

Monitor DAC with Voltmeter
We can even use the AD inputs to measure the DA outputs.

Connect AD1 to DA0 and AD2 to DA1 as shown in the schematic and wiring diagram.

The program 5 Monitor DAC with Voltmeter.spin does the same up/down count to set the DA0 and
DA1 socket voltages and make the P26 and P27 LEDs get brighter and dimmer. It also uses the
Voltmeter object to monitor all three AD channels, so you can monitor the potentiometer voltage along
with the two DA voltage outputs.

Open “5 Monitor DAC with Voltmeter.spin” and use F11 to load it into the Propeller chip.

While the program is loading, click the Parallax Serial Terminal’s Enable button.

Verify that AD1 increases from 0 to 3.3 V as AD2 decreases from 3.3 V to 0 V.

Monitor DAC with Oscilloscope
The dancing voltage measurements from the previous activity might not be as helpful as a graph. We
can use the PST Scope object to graph the AD1 and AD2 measurements.

The Parallax Serial Terminal needs to be configured to display the scope data first.

Click the Parallax Serial Terminal's Prefs... button.

In the Appearance tab, set the Font size to 10, Wrap text to Page, and Page width
(characters) to 128.

Click the OK button to exit the Preferences window.

Now, let's test the PST Scope...

Open “06 Test PSTscope.spin” and use F11 to load it into the Propeller chip.

While the program is loading, click the Parallax Serial Terminal’s Enable button.

You will need to wait for several P26/P27 LED bright/dim cycles before the graph of the
increasing/decreasing voltages appears.

How it Works
The PST Scope object requires a DAT block with all the oscilloscope settings shown in the order that
they are shown. Then, its Start method requires the starting memory address of those values,
which is @Scales.

The PST Scope object takes over all the display updating, and your test code can focus on generating
a signal. You can use the Parallax Serial Terminal to watch the signal graphically, and verify that it is
what you intended to create.

Did you know?

Most objects that start a process in another cog and manage it for
you have a Start method you have to call. They also usually have
a Stop method so that you can recover the cog for use with another
process. The PropBOE library is just the beginning. There are lots of
objects that perform useful tasks and make connecting peripherals to
your propeller a snap. Two big object repositories:
1. The Propeller Object Exchange at http://obex.parallax.com [6].
2. The Propeller Library in the Propeller Tool software (File -> Open
From -> Propeller Library).

Your Turn
You can adjust the rate of the D/A signals by adjusting the time.pause method call. For example,
you can double the signal's frequency (number of times it repeats per second) by cutting
the time.pause durations in half.

Change both instances of time.Pause(10) to time.Pause(5).

Load the modified program into the Propeller.

Take a look at the new signal in the Parallax Serial Terminal. Since it's repeating twice as
fast, there should be twice as many repetitions visible.

If you make the signal repeat even more quickly, it might not display very well. But, you can fix that by
reducing scale on the time axis. For example, you could reduce both time.Pause(5) to
time.Pause(2) and then make the width of each square in the graph represent 0.2 seconds instead
of 0.5 seconds.

Change both instances of time.Pause(5) to time.Pause(2).

Load the modified program into the Propeller, and click the Parallax Serial Terminal's Enable
button. Check the display; it won't look very good.

Decrease the time scale by changing the number below the t(s/div) comment from 0.5 to 0.2.
(It's in the DAT block.)

Load the modified program into the Propeller and click the Parallax Serial Terminal's Enable
button.

Check the display again, it should look considerably better.

Both signals swing between 0 V and 1.65 V. In oscilloscope-speak, you could say that each signal
has a "peak-to-peak amplitude of 1.65 V". If you were to double the CH1 signal's amplitude by making
it swing from 0 to 3.3 V, it wouldn't fit in the display any more. To fix that, you could adjust the channel
1 axis scale. Let's try it.

Double the signal amplitude the DAC sends to channel 1 by changing both dac.Out(0, da)
calls to dac.Out(0, 2*da).

Load the modified program into the Propeller and then click the Parallax Serial Terminal's
Enable button.

Check the LEDs by DA0 and DA1 on your Propeller BOE. The DA0 LED should now get
twice as bright as the DA1 LED.

At this point, the Channel 1 display does not show the whole signal. You can fix this by
adjusting the value below ch1(V/div) label in the DAT block. Change it from 0.5 to 1.0.

Load the modified program into the Propeller and verify that you can now see the entire signal
in the display.

Take a close look at the display. The two signals look the same hight, but CH1 axis on the left
indicates that the CH1 signal swings from 0 to 3.3 V while the CH2 axis on the right indicates
that the CH2 signal still only swings between 0 V and 1.65 V.

At this point, the display probably still doesn't look quite right because the CH1 signal is now running
into the CH2 signal. To move it up a little bit, you can adjust the CH1 axis' offset from the bottom of
the screen.

In the DAT block, change the value below the CH1(V) label from -3.0 to -4.0.

Load the modified program into the Propeller, and click the Parallax Serial Terminal's Enable
button

Verify that the CH1 signal now displays up above the CH2 signal.

What's Next?
We have lots more draft material in the queue. It needs adjustment to schematics, drawings and code
due to some late breaking changes in the board design, and an editing pass too.

The bulk of the material will appear in these two books:

• Propeller Board of Education Projects [7]

• Robotics with the Propeller Boe-Bot [8]

SHOP IN THE PARALLAX STORE ►

Terms of Use ♦ Feedback: learn@parallax.com ♦ Copyright©Parallax Inc. 2012 (unless otherwise
noted)

Source URL: http://learn.parallax.com/PropellerBOE

Links:
[1] http://www.parallax.com/Portals/0/Downloads/sw/propeller/Setup-Propeller-Tool-v1.3.zip
[2] http://learn.parallax.com/sites/default/files/content/prop_boe/start_spin/led/code/PropBOE_Spin_Leds_20120130.zip
[3]
http://learn.parallax.com/sites/default/files/content/prop_boe/start_spin/spin_intro/code/PropBOE_Spin_Intro_20120130.zip
[4]
http://learn.parallax.com/sites/default/files/content/prop_boe/start_spin/button/code/PropBOE_Spin_Buttons_20120130.zip
[5] http://learn.parallax.com/sites/default/files/content/prop_boe/PropBoeBot/code/PropBOE_Spin_Voltage_20120613.zip
[6] http://obex.parallax.com
[7] http://learn.parallax.com/PropellerBoeProjects#overlay-context=
[8] http://learn.parallax.com/PropellerBoeBot#overlay-context=

