Low Current Seven Segment Displays
 Technical Data

Features

- Low Power Consumption
- Industry Standard Size
- Industry Standard Pinout
- Choice of Character Size
7.6 mm (0.30 in), $10 \mathrm{~mm}(0.40$ in), 10.9 mm (0.43 in), 14.2 mm (0.56 in), 20 mm (0.80 in)
- Choice of Colors

AlGaAs Red, High Efficiency Red (HER), Yellow, Green

- Excellent Appearance Evenly Lighted Segments $\pm 50^{\circ}$ Viewing Angle
- Design Flexibility Common Anode or Common Cathode
Single and Dual Digit Left and Right Hand Decimal Points
± 1. Overflow Character
- Categorized for Luminous Intensity
Yellow and Green Categorized for Color
Use of Like Categories Yields a Uniform Display
- Excellent for Long Digit String Multiplexing

Description

These low current seven segment displays are designed for applications requiring low power consumption. They are tested and selected for their excellent low current characteristics to ensure that the segments are matched at low currents. Drive currents as low as 1 mA per segment are available.

Pin for pin equivalent displays are also available in a standard current or high light ambient design. The standard current displays are available in all colors and are ideal for most applications. The high light ambient displays are ideal for sunlight ambients or long string lengths. For additional information see the 7.6 mm Micro Bright Seven Segment Displays, 10 mm Seven Segment Displays, $7.6 \mathrm{~mm} / 10.9$ mm Seven Segment Displays, 14.2 mm Seven Segment Displays, 20 mm Seven Segment Displays, or High Light Ambient Seven Segment Displays data sheets.

HDSP-335X Series HDSP-555X Series HDSP-751X Series HDSP-A10X Series HDSP-A80X Series HDSP-A90X Series HDSP-E10X Series HDSP-F10X Series HDSP-G10X Series HDSP-H10X Series HDSP-K12X, K70X Series HDSP-N10X Series

Devices

AlGaAs HDSP-	$\begin{gathered} \text { HER } \\ \text { HDSP- } \end{gathered}$	Yellow HDSP-	Green HDSP-	Description	Package Drawing
A101	7511	A801	A901	7.6 mm Common Anode Right Hand Decimal	A
A103	7513	A803	A903	7.6 mm Common Cathode Right Hand Decimal	B
A107	7517	A807	A907	7.6 mm Common Anode \pm 1. Overflow	C
A108	7518	A808	A908	7.6 mm Common Cathode \pm 1. Overflow	D
F101				10 mm Common Anode Right Hand Decimal	E
F103				10 mm Common Cathode Right Hand Decimal	F
F107				10 mm Common Anode ± 1. Overflow	G
F108				10 mm Common Cathode ± 1. Overflow	H
G101				10 mm Two Digit Common Anode Right Hand Decimal	X
G103				10 mm Two Digit Common Cathode Right Hand Decimal	Y
E100	3350			10.9 mm Common Anode Left Hand Decimal	I
E101	3351			10.9 mm Common Anode Right Hand Decimal	J
E103	3353			10.9 mm Common Cathode Right Hand Decimal	K
E106	3356			10.9 mm Universal ± 1. Overflow ${ }^{[1]}$	L
H101	5551			14.2 mm Common Anode Right Hand Decimal	M
H103	5553			14.2 mm Common Cathode Right Hand Decimal	N
H107	5557			14.2 mm Common Anode \pm 1. Overflow	O
H108	5558			14.2 mm Common Cathode \pm 1. Overflow	P
K121	K701			14.2 mm Two Digit Common Anode Right Hand Decimal	R
K123	K703			14.2 mm Two Digit Common Cathode Right Hand Decimal	S
N100				20 mm Common Anode Left Hand Decimal	Q
N101				20 mm Common Anode Right Hand Decimal	T
N103				20 mm Common Cathode Right Hand Decimal	U
N105				20 mm Common Cathode Left Hand Decimal	V
N106				20 mm Universal ± 1. Overflow ${ }^{[1]}$	W

Note:

1. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagrams L or W.

Package Dimensions

Package Dimensions (cont.)

Package Dimensions (cont.)

FRONT VIEW

END VIEW

L

J. K
fRONT VIEW

side view
*The Side View of package indicates Country of Origin.

PIN	FUNCTION			
	1	J	K	L
1	CATHODE.a	CATHODE.a	ANODE-a	CATHODE d
2	CATHODE.f	CATHODE.f	ANODE. $\%$	ANODE.d
3	ANODE 31	ANODE [3]	CATHODE 61	NO PIN
4	NO PIN	NO PIN	NO PIN	CATHODE C
5	NO PIN	NO PIN	NO PIN	CATHODE
6	CATHODE dp	NO CONN. ${ }^{\text {[5] }}$	NO CONN. [5]	ANODE
7	CATHODE ${ }^{\text {C }}$	CATHODE E	ANODE-	ANODE C
8	CATHODE.d	CATHODE-d	ANOOE-d	ANODE -dp
9	NO CONN [5]	CATHOOE-dp	ANODE -dp	CATHODE dp
10	CATHODE c	CATHOOE C	ANOOE-C	CATHODE-b
11	CATHODEg	CATHODEg	ANODE-g	CATHODE a
12	NO PIN	NO PIN	NO PIN	NO PIN
13	CATHODE B	CATHODE b	ANODE.b	ANODE a
14	ANODE [3]	ANODE ${ }^{31}$	CATHODE [6]	ANODE-b

NOTES:

1. ALL DIMENSIONS IN MLLLMETRES (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.

3. REDUNDANT ANODES.

4. UNUSED dp POSITION.
5. SEE INTERNAL CIRCUIT DIAGRAM.
6. REDUNDANT CATHODES.
7. SEE PART NUMBER TABLE FOR L.H.D.P. AND R.H.D.P. DESIGNATION.

Package Dimensions (cont.)

PIN	FUNCTION			
	M.	N	0	P
1	CATHODE	ANODE	CATHODE C	ANODE C
2	CATHODE d	ANODE d	ANODE c.a	CATHODE c. d
3	ANODEI4]	CATHODEISI	CATHODE b	ANODE ${ }^{\text {b }}$
4	CATHODE c	ANODE C	ANODE a, b. DP	CATHODE a, b, DP
5	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP
6	CATHODEb	ANODE b	CATHODE a	ANODE a
7	CATHODE a	ANODE a	ANODE a.b. DP	CATHODE a.b. DP
8	ANODE141	CATHODEISI	ANODE c.a	CATHODE c.a
9	CATHODE \dagger	ANODE f	CATHODE d	ANODE d
10	CATHODE g	ANODE g	NO PIN	NO PIN

NOTES:

1. ALL DIMENSIONS IN MLLMETRES (INCHES),
2. MAXIMUM
3. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
4. REDUNDANT ANODES.
5. REDUNDANT CATHODES.

Package Dimensions (cont.)

END VIEW O, T, U, V, W

FRONT VIEW W

Pin	Function				
	0	T	u	V	w
1	NO PIN				
2	CATHODE a	CATHODE a	ANODE a	ANODE a	CATHODE a
3	CATHODE 1	CATHODE 1	ANODE 1	ANODE	ANODE d
4	ANODE ${ }^{\text {[3] }}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{[6]}$	CATHODE ${ }^{[6]}$	CATHODE d
5	CATHODE E	CATHODE	ANODE E	ANODE e	CATHODE C
6	ANODE ${ }^{[3 \mid}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{161}$	CATHODE ${ }^{[6]}$	CATHODE E
7	CATHODE dp	NO CONNEC	NO CONNEC	ANODE dp	ANODE e
8	NO PIN	NO PIN	NO PIN	NO PIN	CATHODE dp
9	NO PIN				
10	NO PIN	CATHODE dp	ANOOE dp	NO PIN	ANODE dp
11	CATHODE d	CATHODE ${ }^{\text {d }}$	ANODE d	ANODE d	CATHODE dp
12	ANODE ${ }^{\text {\|31 }}$	ANODE ${ }^{[3]}$	CATHOOE ${ }^{\|6\|}$	CATHODE ${ }^{\|6\|}$	CATHODE D
13	CATHODE C	CATHODE C	ANODE C	ANODE c	ANODE b
14	CATHODE g	CATHODE g	ANODE 9	ANODE g	ANODE C
15	CATHODE b	CATHODE 6	ANODE b	ANODE b	ANODE a
16	NO PIN				
17	ANODE ${ }^{[3]}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{(6)}$	CATHODE ${ }^{\text {(6) }}$	CATHODE a
18	NO PIN				

NOTES:

1. ALL DIMENSIONS IN MLLMETRES (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. REDUNDANT ANODES.
4. UNUSED dp POSITION.
5. SEE INTERNAL CIRCUTT DIAGRAM.
6. REDUNDANT CATHODES.
7. SEE PART NUMBER TABLE FOR L.H.D.P. AND R.H.D.P. DESIGNATION.

Package Dimensions (cont.)

TOP END VIEW R, S

* The Side View of package indicates
 Country of Origin.

FRONT VIEW X, Y

Pin	Function	
	R,X	S, \mathbf{Y}
1	E CATHODE NO. 1	E ANODE NO 1
2	D CATHODE NO. 1	D ANODE NO. 1
3	C CATHODE NO. 1	C ANODE NO. 1
4	DP CATHODE NO. 1	DP ANOOE NO. 1
5	E CATHODE NO. 2	E ANODE NO. 2
6	D CATHODE NO. 2	D ANODE NO. 2
7	G CATHODE NO. 2	G ANODE NO. 2
8	C CATHODE NO. 2	C ANODE NO. 2
9	DP CATHODE NO. 2	DP ANODE NO. 2
10	B CATHODE NO. 2	B ANODE NO. 2
11	A CATHODE NO 2	A ANODE NO 2
12	F CATHODE NO. 2	F ANODE NO. 2
13	DIGIT NO. 2 ANODE	DIGIT NO. 2 CATHODE
14	DIGIT NO. 1 ANODE	DIGIT NO 1 CATHODE
15	B CATHODE NO. 1	B ANODE NO. 1
16	A CATHODE NO. 1	A ANODE NO. 1
17	G CATHODE NO. 1	G ANODE NO 1
18	F CATHODE NO. 1	F ANODE NO. 1

nOTES:

1. DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. ALL UNTOLERANCED DIIMENSIONS ARE FOR REFERENCE ONLY. 3. WHERE APPLICABLE.

Internal Circuit Diagram

M

I

B, F

C, G

D, H

-

P

0

T

U

v

Internal Circuit Diagram (cont.)

HOLE PATTERN FOR PCB LAYOUT TO ACHIEVE UNIFORM 0.450 in . DIGIT TO DIGIT PITCH. FOR HDSP-FXXX TO HDSP-GXXX.

Absolute Maximum Ratings

Description	AlGaAs Red HDSP-A10X/E10X/ H10X/K12X/N10X/ F10X, G10X Series	HER HDSP-751X/ 335X/555X/ K70X Series	Yellow HDSP-A80X Series	$\begin{gathered} \text { Green } \\ \text { HDSP-A90X } \\ \text { Series } \end{gathered}$	Units
Average Power per Segment or DP	37	52		64	mW
Peak Forward Current per Segment or DP	45				mA
DC Forward Current per Segment or DP	$15^{[1]}$	$15^{[2]}$			mA
Operating Temperature Range	-20 to +100	-40 to +100			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100				${ }^{\circ} \mathrm{C}$
Reverse Voltage per Segment or DP	3.0				V
Lead Solder Temperature for 3 Seconds (1.60 mm [0.063 in.] below seating plane)	260				${ }^{\circ} \mathrm{C}$

Notes:

1. Derate above $91^{\circ} \mathrm{C}$ at $0.53 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate $\mathrm{HER} /$ Yellow above $80^{\circ} \mathrm{C}$ at $0.38 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ and Green above $71^{\circ} \mathrm{C}$ at $0.31 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AlGaAs Red

Device Series HDSP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{V}	315	600		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				3600			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
F10X, G10X			330	650			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				3900			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
E10X			390	650			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				3900			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
H10X, K12X			400	700			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				4200			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
N10X			270	590			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				3500			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
All Devices	Forward Voltage/Segment or DP	V_{F}		1.6		V	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				1.7			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
				1.8	2.2		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{Pk}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mathrm{~mA}$
	Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		$-2 \mathrm{mV}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
A10x	Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-PIN }}$		255		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	
F10X, G10X				320			
E10X				340			
H10X, K12X				400			
N10X				430			

High Efficiency Red

Device Series HDSP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
751X	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{V}	160	270		mcd	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
				1050			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
$\begin{gathered} 335 \mathrm{X}, 555 \mathrm{X} \\ \mathrm{~K} 70 \mathrm{X} \end{gathered}$			200	300			$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
				1200			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
			270	370			$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
				1480			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
All Devices	Forward Voltage/Segment or DP	V_{F}		1.6		V	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
				1.7			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
				2.1	2.5		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{Pk}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		626		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mathrm{~mA}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
751X	Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-PIN }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
335X				280			
555X, K70X				345			

Yellow

Green

Device Series HDSP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
A90X	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{V}	250	475		mcd	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$
				1500			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.9		V	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$
				2.0			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
				2.1	2.5		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{Pk}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		566		nm	
	Dominant Wavelength ${ }^{[3,5]}$	$\lambda_{\text {d }}$		571	577	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mathrm{~mA}$
	Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

1. Device case temperature is $25^{\circ} \mathrm{C}$ prior to the intensity measurement.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. The yellow (HDSP-A800) and Green (HDSP-A900) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

AlGaAs Red

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

Figure 1. Maximum Allowable Average or DC Current vs. Ambient Temperature.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Forward Current vs. Forward Voltage.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Yellow, Green

Figure 5. Maximum Allowable Average or DC Current vs. Ambient Temperature.

If - FORWARD CURRENT PER SEGMENT - TA

Figure 7. Relative Luminous Intensity vs. DC Forward Current.

Electrical/Optical

For more information on electrical/optical characteristics, please see Application Note 1005.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the

Figure 6. Forward Current vs. Forward Voltage.

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.
chorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For information on soldering LEDs please refer to Application Note 1027.

