

力率改善コントロール IC

■概要

NJM2375/A は、電子機器の電源部分で発生する高調波電流 を制限するために開発された力率改善コントロールICです。

この IC は, スタートアップ・タイマ, 第一象限マルチプライ ヤ回路、臨界導通動作を補償するゼロ電流検出器、トランスコ ンダクタンス、誤差アンプ、高精度基準電圧、電流センスコン パレータ及びパワーMOS·FET のドライブに最適なトーテム・ ポール出力段を内蔵しております。

また、保護回路として出力過電圧検出回路、cycle-by-cycle 過電流検出回路、最大ピーク電流検出回路を内蔵しました。

NJM2375A は、NJM2375 の低電圧検出回路部の立ち上がり 電圧を低下させた製品です。

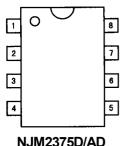
■外形

NJM2375D/AD

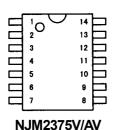
NJM2375M/AM

NJM2375V/AV

NJM2375L/AL


■ 特徴

- ●過電圧コンパレータ内蔵
- ●クイックスタート回路内蔵
- ●スタートアップ・タイマ内蔵
- ●第一象限マルチプライヤ内蔵
- ●ゼロ電流検出器内蔵
- ●高精度基準電圧内蔵 ±2%
- ●"H"状態クランプ付トーテムポール出力
- ●低電圧誤動作防止回路


(立ち上がり電圧/NJM2375: 13V typ., NJM2375A: 10.4V typ.)

- ●低スタートアップ電流及び動作電流
- ●バイポーラ構造
- DIP8, DMP8, SSOP14, SIP8 ●外形

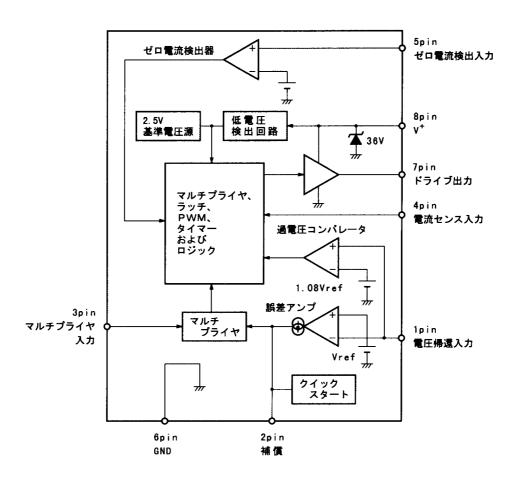
■端子接続図

NJM2375M/AM

O NJM2375L/AL

ピン配置

2. NC 3. C_{SENSE}


1. M_{ULT}

- 4. NC
- 5. D_{ZERO} 6. NC
- 8. DRIVE
- 9. NC
- 10. V⁺
- 11. NC
- 12. V_{FB} 13. NC
- 7. GND 14. C_{OMP}

ピン配置

- 1. V_{FB}
- 2. C_{OMP}
- 3. M_{ULT}
- 4. C_{SENSE}
- 5. D_{7FRO}
- 6. GND
- 7. DRIVE
- 8. V⁺

■ ブロック図

■ 絶対最大定格 (T_a=25°C)

項目	記号	定格	単位
全電源電流およびツェナー電流	I _{CC} +I _Z	30	mA
出力電流(ソースまたはシンク)	lo	500	mA
電流センス, マルチプライヤおよび電圧帰還入力	V _{IN}	-1.0~+10	V
ゼロ電流検出入力 "H" 状態順電流	I _{IN}	50	mA
"L" 状態逆電流		-10	
消費電力	P _D	(DIP8) 500	mVV
		(DMP8) 300	
		(SSOP14) 300	
		(SIP8) 700	
動作温度範囲	T _{OPR}	-40~+85	°C
保存温度範囲	T _{STG}	-50~+150	°C

■ **電 気 的 特 性** (V⁺=12V^{※1}, T_a=25°C)

●誤差アンプ

項目	記号	条件	最 小	標準	最大	単 位
電圧帰還入力スレッシホールド1	V _{FB1}	V ⁺ =12V	2.465	2.500	2.535	V
電圧帰還入力スレッシホールド2	V_{FB2}	V ⁺ =28V	2.440	2.500	2.540	V
ラインレギュレーション	RegLine	V ⁺ =12~28V	-	1.0	10	mV
入力バイアス電流	I _{IB}	V _{FB} =0V	-	-0.1	-0.5	μΑ
トランスコンダクタンス	gm		80	100	130	µmho
出力電流(ソース)	l _{oso}	V _{FB} =2.3V	-	10	-	μΑ
出力電流(シンク)	I _{OSI}	V _{FB} =2.7V	-	10	-	μΑ
出力電圧振幅 1	V _{OH(EA)}	V _{FB} =2.3V ("H"状態)	5.8	6.4	-	V
出力電圧振幅2	V _{OL(EA)}	V _{FB} =2.7V ("L"状態)	-	1.7	2.4	V

●過電圧コンパレータ

項目	記号	条件	最 小	標準	最 大	単位
電圧帰還入力スレッシホールド	V _{FB(0V)}		1.065 ×V _{FB}	1.080 ×V _{FB}	1.095 ×V _{FB}	V

●マルチプライヤ

項目	記号	条件	最 小	標準	最大	単 位
入力バイアス電流	I _{IB}	V _{FB} =0V(FB 端 子)	-	-0.1	-0.5	μA
入力スレッシホールド	$V_{\text{th}(M)}$	(FB 端子)	1.05× V _{OL} (EA)	1.20× V _{OL} (EA)	-	V
ダイナミック入力電圧範囲	V _{PIN3}	マルチプライヤ入力ピン	0~2.5	0~3.5	-	V
	V _{PIN2}	補償ピン	V _{th(M)} ∼	V _{th(M)} ∼	-	V
			V _{th(M)} +1.0V	V _{th(M)} +1.5V		
マルチプライヤ利得 ^{※2}	К	Vmp=0.5V, Vcomp=V _{th(M)} +1.0V (note 2)	0.43	0.65	0.87	μmho

●ゼロ電流検出器

項目	記号	条件	最 小	標準	最大	単位
入力スレッシホールド電圧	V _{th}	√	1.33	1.60	1.87	V
ヒステリシス電圧	V_{H}	V ⁺ 減少	100	200	300	mV
入力クランプ電圧	VIH	"H"状態 (I _{DET} =+3.0mA)	5.20	5.80	-	V
	V _{IL}	"L"状態 (I _{DET} =-3.0mA)	0.30	0.70	1.00	V

NJM2375/A

■ 電気的特性 (V⁺=12V^{※1}, T_a=25°C)

●電流センス・コンパレータ

項目	記号	条件	最 小	標準	最大	単 位
入力バイアス電流	I _{IB}	I _{sence} =0V	-	-0.15	-1.0	μA
入力オフセット電圧	V_{IO}	V _{compe} =1.10V, V _M =0V	-	9.0	25.0	mV
電流センス入力スレッシホールド ^{※3}	$V_{\text{th(MAX)}}$		1.30	1.50	1.80	V
遅延時間	tPHL		-	200	-	nS

●ドライブ出力

項目	記号	条件	最 小	標準	最大	単位
出力電圧 "L" 状態	V _{OL1}	I _{sink} =20mA	-	0.3	0.8	V
	V _{OL2}	I _{sink} =200mA	-	2.4	3.3	V
出力電圧 "H" 状態	V _{OH1}	I _{source} =20mA	9.8	10.3	-	V
	V _{OH2}	I _{source} =200mA	7.8	8.4	-	V
出力電圧 "H" 状態	$V_{C(MAX)}$	I_{source} =20mA CL=15pF, V [†] =30V	14	16	18	V
出力電圧立ち上がり時間	tr	CL=1.0nF	-	100	150	nS
出力電圧立ち下がり時間	tf	CL=1.0nF	-	50	120	nS
UVLO 動作時の出力電圧	V _{C(UVLO)}	V ⁺ =7V, I _{sink} =1.0mA	-	0.1	0.5	V

●リスタート・タイマ

項目	記号	条件	最 小	標準	最大	単 位
リスタート遅延時間	tDLY		200	620	-	μS

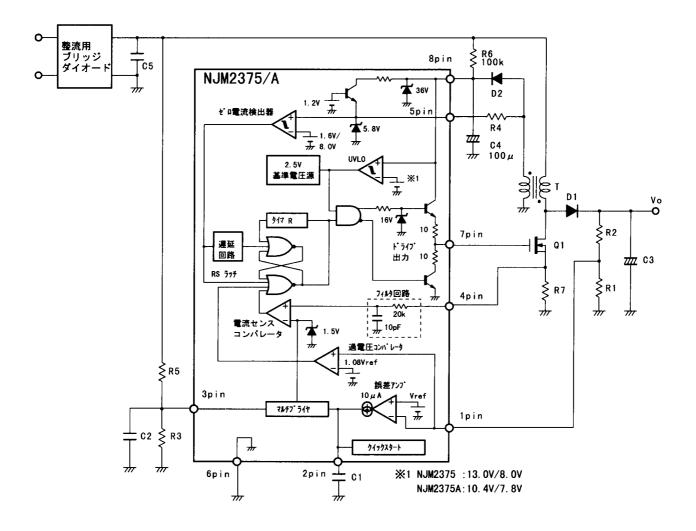
■ 電気的特性 (V⁺=12V^{**1}, T_a=25°C)

●低電圧検出回路部

項目	記号	条件	最 小	標準	最大	単位
(NJM2375)						
スタートアップ・ スレッシホールド電圧	V _{th(on)}	V ⁺ 增加	11.5	13.0	14.5	V
ターンオン後の最小動作電圧	V _{shutdown}	√減少	7.0	8.0	9.0	V
ヒステリシス	V _H		3.8	5.0	6.2	V
(NJM2375A)						
スタートアップ・ スレッシホールド電圧	V _{th(on)}	V ⁺ 増加	9.4	10.4	11.4	V
ターンオン後の最小動作電圧	V _{shutdown}	V [⁺] 減少	6.8	7.8	8.8	V
ヒステリシス	V _H		1.4	2.6	3.8	V

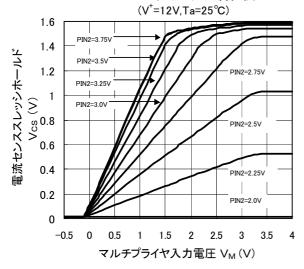
●全デバイス

項目	記号	条件	最 小	標準	最大	単位
電源電流						
スタートアップ時	I _{CC1}	V ⁺ =7.0V	-	0.25	0.4	mA
動作時	I _{CC2}		-	6.5	12	mA
ダイナミック動作時	I _{CC3}	50kHz, CL=1.0nF	-	9.0	20	mA
電源ツェナー電圧 ^{※4}	Vz	I _{CC} =25mA	30	36	-	V

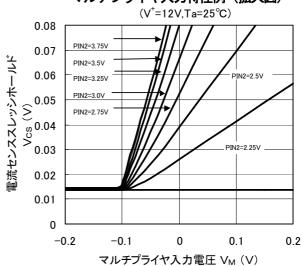

●注意事項

 $%1: V^{\dagger}$ は 12V 設定する前にスタートアップ・スレッシホールド以上に調整しておきます。

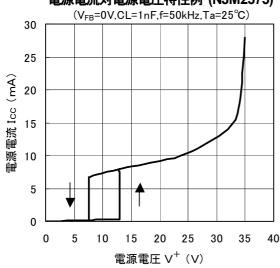
%3: このパラメータは V_{FB} =0V,および V_{M} =3.0V で測定しております。

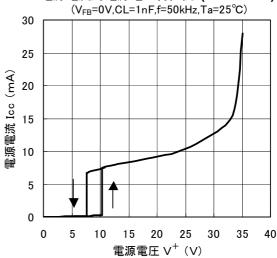

※4:8ピン内部のツェナーダイオードは、外部のサージからICを保護するために入っています。 電源ツェナー電圧より高いDC電圧を常時加えることはしないでください。

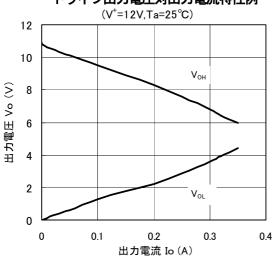
■ アプリケーション回路例

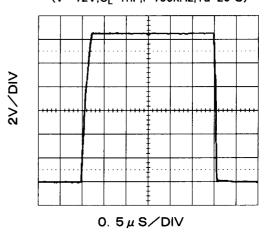


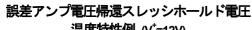
■ 特性例

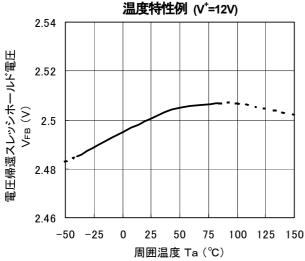

電流センス入力スレッシホールド対 マルチプライヤ入力特性例


電流センス入力スレッシホールド対 マルチプライヤ入力特性例(拡大図)

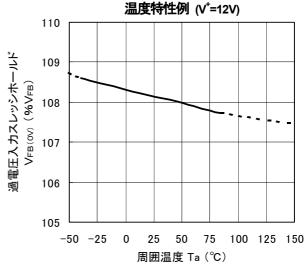

電源電流対電源電圧特性例 (NJM2375)


電源電流対電源電圧特性例 (NJM2375A)

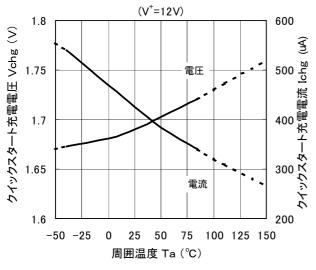

ドライブ出力電圧対出力電流特性例

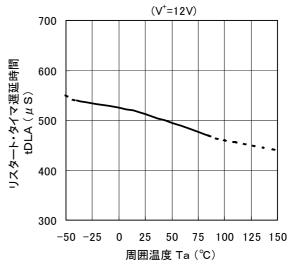


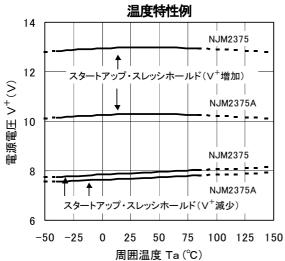
ドライブ出力波形 (V⁺=12V,C_i=1nF,f=150kHz,Ta=25℃)

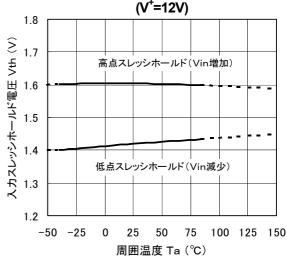


■ 特性例




過電圧コンパレータ入力スレッシホールド


クイックスタート充電電圧・電流温度特性例


リスタート・タイマ遅延時間温度特性例

低電圧検出回路スレッシホールド

ゼロ電流検出器入力スレッシホールド電圧

〈注意事項〉 このデータブックの掲載内容の正確さには 万全を期しておりますが、掲載内容について 何らかの法数な保証を行うものではありませ ん。とくに応用回路については、製品の代表 的な応用例を説明するためのものです。また 工業所有権その他の権利の実施権の許諾を伴 うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。