

Features

- Highest luminous flux
- Super energy efficiency
- Superior ESD protection
- Superior UV Resistance

Applications

- Toys
- Games
- Audio

Outline Dimension

Absolute Maximum Rating (Ta=25℃) Value Item Symbol Unit Green/Blue Red DC Forward Current \mathbf{I}_{F} 200 200 mA Pulse Forward Current# 250 250 IFP mА Reverse Voltage V_R 5 5 V 800 Power Dissipation \mathbf{P}_{D} 600 mW -30 ~ +85 °C **Operating Temperature** Topr Storage Temperature $-40 \sim +100$ Tstg °C Lead Soldering Temperature Tsol 260°C/10sec

Directivity

#Pulse width Max.10ms Duty ratio max 1/10

■Electrical -Optical Characteristics (Ta=25℃)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
DC Forward Voltage*1	$V_F(R)$	I _F =150mA	2.0	2.5	3.0	V
	$V_F(B/G)$	IF=150mA	3.0	3.3	4.0	V
DC Reverse Current	I _R	V _R =5V	-	-	10	μA
Domi. Wavelength*2	$\lambda_D(Red)$	IF=150mA	620	625	630	nm
	$\lambda_D(Green)$	IF=150mA	520	525	535	nm
	$\lambda_D(Blue)$	I _F =150mA	465	470	475	nm
Luminous Flux*3	$\Phi v \ (\text{Red})$	IF=150mA	15	20	-	lm
	$\Phi v (\text{Green})$	IF=150mA	20	30	-	lm
	Φv (Blue)	IF=150mA	5	10	-	lm
50% Power Angle	201/2	I _F =150mA	-	120	-	deg

*1 Tolerance of measurements of forward voltage is±0.1V

*2 Tolerance of measurements of dominant wavelength is ± 1 nm

*3 Tolerance of measurements of luminous flux is $\pm 15\%$

Note: Don't drive at rated current more than 5s without heat sink for Tops H Power emitter series.

InGaN AND AlInGaP LED

TYPICAL ELECTRICAL/OPTICAL CHARACTERISTIC CURVES

5x5mmTops H Power Pure Green & Red & Blue LED

OSTCXBTHC1E

Soldering Conditions

Reflow Soldering		Ha	Hand Soldering		
Pre-Heat	180 ~ 200°C				
Pre-Heat Time	120 sec. Max.		350°C Max. 3 sec. Max. (one time only)		
Peak temperature	260°C Max.	Temperature			
Dipping Time	10 sec. Max.	Soldering time			
Condition	Refer to Temperature-profile	C			

• Reflow Soldering Condition(Lead-free Solder)

*Recommended soldering conditions vary according to the type of LED

*Although the recommended soldering conditions are specified in the above table, reflow, or hand soldering at the lowest possible temperature is desirable for the LEDs.

*A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.

•All SMD LED products are pb-free soldering available.

• Occasionally there is a brightness decrease caused by the influence of heat or ambient atmosphere during air reflow. It is recommended that the User use the nitrogen reflow method.

• Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable

double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

- Reflow soldering should not be done more than two times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

a

Taping Packing

Remark : 1000pcs /Reel

Precautions in Use for Surface Mount Diode

■ Storage

· Storage Conditions

Before opening the package:

The LEDs should be kept at 30°C or less and 60%RH or less. The LEDs should be used within a year. When storing the LEDs, moisture proof packaging with absorbent material (silica gel) is recommended.

• After opening the package:

Soldering should be done right after opening the package (within 24hrs).

Keeping of a fraction, sealing and Temperature: 5~30°C Humidity: Less than 30%.

If the package has been opened more than 24 Hours, components should be dried for 12hrs, at $60\pm5^\circ$ C.

 \cdot Optosupply LED electrode sections are comprised of a silver plated copper alloy. The silver surface may be affected by environments which contain corrosive gases and so on. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the User use the LEDs as soon as possible.

 \cdot Please avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur.

