

Advanced Information **Preliminary Datasheet**

OV7670/OV7171 CMOS VGA (640x480) CAMERACHIPTM Sensor with OmniPixel[®] Technology

General Description

The OV7670/OV7171 CAMERACHIPTM image sensor is a low voltage CMOS device that provides the full functionality of a single-chip VGA camera and image processor in a small footprint package. The OV7670/OV7171 provides full-frame, sub-sampled or windowed 8-bit images in a wide range of formats, controlled through the Serial Camera Control Bus (SCCB) interface.

This product has an image array capable of operating at up to 30 frames per second (fps) in VGA with complete user control over image quality, formatting and output data transfer. All required image processing functions, including exposure control, gamma, white balance, color saturation, hue control and more, are also programmable through the SCCB interface. In addition, OmniVision sensors use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise (FPN), smearing, blooming, etc., to produce a clean, fully stable color image.

Note: The OV7670/OV7171 uses a lead-free package.

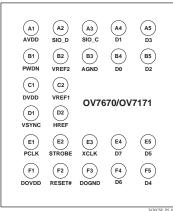
Features

- High sensitivity for low-light operation
- Low operating voltage for embedded portable apps
- Standard SCCB interface compatible with I2C interface
- Output support for Raw RGB, RGB (GRB 4:2:2 RGB565/555/444), YUV (4:2:2) and YCbCr (4:2:2) formats
- Supports image sizes: VGA, CIF, and any size scaling down from CIF to 40x30
- VarioPixel® method for sub-sampling
- Automatic image control functions including: Automatic Exposure Control (AEC), Automatic Gain Control (AGC), Automatic White Balance (AWB), Automatic Band Filter (ABF), and Automatic Black-Level Calibration (ABLC)
- Image quality controls including color saturation, hue, gamma, sharpness (edge enhancement), and anti-blooming
- ISP includes noise reduction and defect correction
- Supports LED and flash strobe mode
- Supports scaling
- Lens shading correction
- Flicker (50/60 Hz) auto detection
- Saturation level auto adjust (UV adjust)
- Edge enhancement level auto adjust
- De-noise level auto adjust

Ordering Information

Product	Package
OV07670-VL2A (Color, lead-free)	24 pin CSP2
OV07171-VL2A (B&W, lead-free)	24 pin CSP2

Applications


- Cellular and Picture Phones
- Toys
- PC Multimedia
- Digital Still Cameras

Key Specifications

Act	ive Array Size	640 x 480
7.0	Digital Core	1.8VDC +10%
Danier Complex		
Power Supply	Analog	2.45V to 3.0V
	1/0	1.7V to 3.0V ^a
Power	Active	60 mW typical
Requirements	7.0	(15fps VGA YUV format)
	Standby	< 20 µA
Temperature	Operation	-30°C to 70°C
Range	Stable Image	0°C to 50°C
	1	 YUV/YCbCr 4:2:2
Output F	Formata (0 hit)	 RGB565/555/444
Output F	Formats (8-bit)	• GRB 4:2:2
		 Raw RGB Data
	Lens Size	1/6"
	nief Ray Angle	25°
Ma	aximum Image Transfer Rate	30 fps for VGA
		•
	Sensitivity	1.3 V/(Lux • sec)
	S/N Ratio	46 dB
D	ynamic Range	52 dB
	Scan Mode	Progressive
Electro	nics Exposure	Up to 510:1 (for selected fps)
	Pixel Size	3.6 µm x 3.6 µm
	Dark Current	12 mV/s at 60°C
	Well Capacity	17 K e
	Image Area	2.36 mm x 1.76 mm
Packag	e Dimensions	3785 μm x 4235 μm

I/O power should be 2.45V or higher when using the internal regulator for Core (1.8V); otherwise, it is necessary to provide an external 1.8V for the Core power supply.

Figure 1 OV7670/OV7171 Pin Diagram (Top View)

G

R

Analog

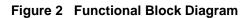
Processing

Column Sense Amp

Image Array (656 x 488)

Video Timing Generator

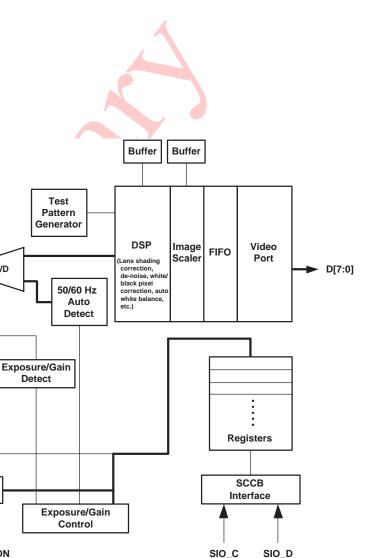
PCLK VSYNC RESET# PWDN



Functional Description

Figure 2 shows the functional block diagram of the OV7670/OV7171 image sensor. The OV7670/OV7171 includes:

A/D


- Image Sensor Array (total array of 656 x 488 pixels, with active pixels 640 x 480 in YUV mode)
- **Analog Signal Processor**
- A/D Converters
- Test Pattern Generator
- Digital Signal Processor (DSP)
- Image Scaler
- **Timing Generator**
- Digital Video Port
- **SCCB** Interface
- LED and Strobe Flash Control Output

Select

Row

STROBE HREF

7670CSP_DS_002

Clock

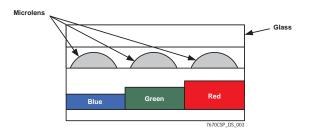

XCLK

Image Sensor Array

The OV7670/OV7171 sensor has an image array of 656 x 488 pixels for a total of 320,128 pixels, of which 640 x 480 pixels are active (307,200 pixels). Figure 3 shows a cross-section of the image sensor array.

Figure 3 Image Sensor Array

Timing Generator

In general, the timing generator controls the following functions:

- Array control and frame generation
- · Internal timing signal generation and distribution
- Frame rate timing
- Automatic Exposure Control (AEC)
- External timing outputs (VSYNC, HREF/HSYNC, and PCLK)

Analog Signal Processor

This block performs all analog image functions including:

- Automatic Gain Control (AGC)
- Automatic White Balance (AWB)

A/D Converters

After the Analog Processing block, the bayer pattern Raw signal is fed to a 10-bit analog-to-digital (A/D) converter shared by G and BR channels. This A/D converter operates at speeds up to 12 MHz and is fully synchronous to the pixel rate (actual conversion rate is related to the frame rate).

In addition to the A/D conversion, this block also has the following functions:

- Digital Black-Level Calibration (BLC)
- Optional U/V channel delay
- · Additional A/D range controls

In general, the combination of the A/D Range Multiplier and A/D Range Control sets the A/D range and maximum value to allow the user to adjust the final image brightness as a function of the individual application.

Test Pattern Generator

The Test Pattern Generator features the following:

- 8-bar color bar pattern
- Fade-to-gray color bar pattern
- Shift "1" in output pin

Digital Signal Processor (DSP)

This block controls the interpolation from Raw data to RGB and some image quality control.

- Edge enhancement (a two-dimensional high pass filter)
- Color space converter (can change Raw data to RGB or YUV/YCbCr)
- RGB matrix to eliminate color cross talk
- Hue and saturation control
- White/black pixel correction
- De-noise
- Lens shading correction
- Programmable gamma control
- Transfer 10-bit data to 8-bit

Image Scaler

This block controls all output and data formatting required prior to sending the image out. This block scales YUV/RGB output from VGA to CIF and almost any size under CIF.

Digital Video Port

Register bits COM2[1:0] increase I_{OL}/I_{OH} drive current and can be adjusted as a function of the customer's loading.

SCCB Interface

The Serial Camera Control Bus (SCCB) interface controls the CAMERACHIP sensor operation. Refer to *OmniVision Technologies Serial Camera Control Bus (SCCB)*Specification for detailed usage of the serial control port.

LED and Strobe Flash Control Output

The OV7670/OV7171 has a Strobe mode that allows it to work with an external flash and LED.

Pin Description

Table 1 Pin Description

Pin Number	Name	Pin Type	Function/Description
A1	AVDD	Power	Analog power supply
A2	SIO_D	I/O	SCCB serial interface data I/O
A3	SIO_C	Input	SCCB serial interface clock input
A4	D1 ^a	Output	YUV/RGB video component output bit[1]
A5	D3	Output	YUV/RGB video component output bit[3]
B1	PWDN	Input (0) ^b	Power Down Mode Selection 0: Normal mode 1: Power down mode
B2	VREF2	Reference	Reference voltage - connect to ground using a 0.1 µF capacitor
В3	AGND	Power	Analog ground
B4	D0	Output	YUV/RGB video component output bit[0]
B5	D2	Output	YUV/RGB video component output bit[2]
C1	DVDD	Power	Power supply (+1.8 VDC) for digital logic core
C2	VREF1	Reference	Reference voltage - connect to ground using a 0.1 µF capacitor
D1	VSYNC	Output	Vertical sync output
D2	HREF	Output	HREF output
E1	PCLK	Output	Pixel clock output
E2	STROBE	Output	LED/strobe control output
E3	XCLK	Input	System clock input
E4	D7	Output	YUV/RGB video component output bit[7]
E5	D5	Output	YUV/RGB video component output bit[5]
F1	DOVDD	Power	Digital power supply for I/O (1.7V ~ 3.0V)
F2	RESET#	Input	Clears all registers and resets them to their default values. 0: Reset mode 1: Normal mode
F3	DOGND	Power	Digital ground
F4	D6	Output	YUV/RGB video component output bit[6]
F5	D4	Output	YUV/RGB video component output bit[4]

a. D[7:0] for 8-bit YUV or RGB (D[7] MSB, D[0] LSB)

b. Input (0) represents an internal pull-down resistor.

Electrical Characteristics

Table 2 Absolute Maximum Ratings

Ambient Storage Temperature	-40°C to +95°C	
	V _{DD-A}	4.5 V
Supply Voltages (with respect to Ground)	V _{DD-C}	3 V
	V _{DD-IO}	4.5 V
All Input/Output Voltages (with respect to Ground)	-0.3V to V _{DD-IO} +0.5V	
Lead-free Temperature, Surface-mount process	245°C	

NOTE: Exceeding the Absolute Maximum ratings shown above invalidates all AC and DC electrical specifications and may result in permanent device damage.

Table 3 DC Characteristics (-30°C < T_A < 70°C)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{DD-A}	DC supply voltage – Analog		2.45	2.75	3.0	V
V _{DD-C}	DC supply voltage – Digital Core	-	1.62	1.8	1.98	V
V _{DD-IO}	DC supply voltage – I/O power	-	1.7	-	3.0	V
I _{DDA}	Active (Operating) Current	See Note ^a		10 + 8 ^b		mA
I _{DDS-SCCB}	Standby Current	See Note ^c		1		mA
I _{DDS-PWDN}	Standby Current	See Note		10	20	μΑ
V _{IH}	Input voltage HIGH	CMOS	0.7 x V _{DD-IO}			V
V _{IL}	Input voltage LOW				0.3 x V _{DD-IO}	V
V _{OH}	Output voltage HIGH	CMOS	0.9 x V _{DD-IO}			V
V _{OL}	Output voltage LOW				0.1 x V _{DD-IO}	V
I _{OH}	Output current HIGH	See Note ^d	8			mA
I _{OL}	Output current LOW		15			mA
IL	Input/Output Leakage	GND to V _{DD-IO}			± 1	μΑ

a. $V_{DD-A} = 2.5V$, $V_{DD-C} = 1.8V$, $V_{DD-IO} = 2.5V$ $I_{DDA} = \sum \{I_{DD-IO} + I_{DD-C} + I_{DD-A}\}$, $f_{CLK} = 24MHz$ at 30 fps YUV output, no I/O loading

b. $I_{DD-C} = 10$ mA, $I_{DD-A} = 8$ mA, without loading

c. $V_{DD-A} = 2.5V$, $V_{DD-C} = 1.8V$, $V_{DD-IO} = 2.5V$ $I_{DDS-SCCB}$ refers to a SCCB-initiated Standby, while $I_{DDS-PWDN}$ refers to a PWDN pin-initiated Standby

d. Standard Output Loading = 25pF, $1.2K\Omega$

Table 4 Functional and AC Characteristics (-30°C < T_A < 70°C)

Symbol	Parameter	Min	Тур	Max	Unit					
Functional C	haracteristics									
	A/D Differential Non-Linearity		<u>+</u> 1/2		LSB					
	A/D Integral Non-Linearity		<u>+</u> 1		LSB					
	AGC Range			30	dB					
(D)((D)	Red/Blue Adjustment Range			12	dB					
	N, CLK, RESET#)	40	24	40						
f _{CLK}	Input Clock Frequency	10	24	48	MHz					
t _{CLK}	Input Clock Period	21	42	100	ns					
t _{CLK:DC}	Clock Duty Cycle	45	50	55	%					
t _{S:RESET}	Setting time after software/hardware reset			1	ms					
t _{S:REG}	Settling time for register change (10 frames required)	7		300	ms					
SCCB Timing	g (see Figure 4)									
f _{SIO_C}	Clock Frequency			400	KHz					
t _{LOW}	Clock Low Period	1.3			μS					
t _{HIGH}	Clock High Period	600			ns					
t _{AA}	SIO_C low to Data Out valid	100		900	ns					
t _{BUF}	Bus free time before new START	1.3			μs					
t _{HD:STA}	START condition Hold time	600			ns					
t _{SU:STA}	START condition Setup time	600			ns					
t _{HD:DAT}	Data-in Hold time	0			μS					
t _{SU:DAT}	Data-in Setup time	100			ns					
t _{SU:STO}	STOP condition Setup time	600			ns					
$t_{R,}t_{F}$	SCCB Rise/Fall times			300	ns					
t _{DH}	Data-out Hold time	50			ns					
Outputs (VS)	NC, HREF, PCLK, and D[7:0] (see Figure 5, Figure 6, F	igure 7, Figu	ire 9, and Fi	igure 10)						
t _{PDV}	PCLK[↓] to Data-out Valid			5	ns					
t _{SU}	D[7:0] Setup time	15			ns					
t _{HD}	D[7:0] Hold time	8			ns					
t _{PHH}	PCLK[↓] to HREF[↑]	0		5	ns					
t _{PHL}	PCLK[↓] to HREF[↓]	0		5	ns					
AC Conditions:	 V_{DD}: V_{DD-C} = 1.8V, V_{DD-A} = 2.5V, V_{DD-IO} = 2.5V Rise/Fall Times: I/O: 5ns, Maximum									

Timing Specifications

Figure 4 SCCB Timing Diagram

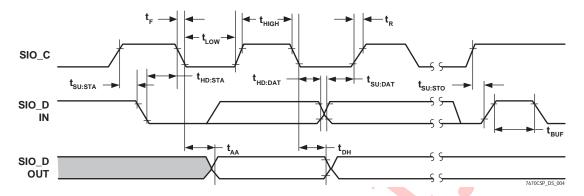


Figure 5 Horizontal Timing

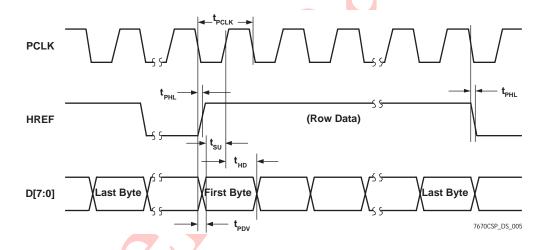
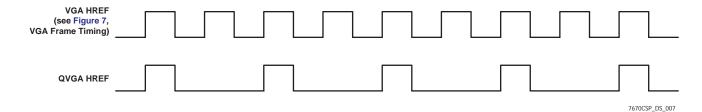
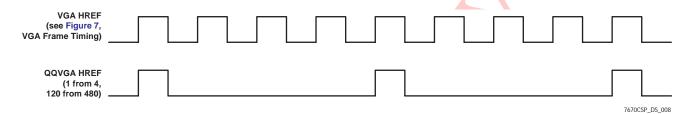



Figure 6 VGA Frame Timing



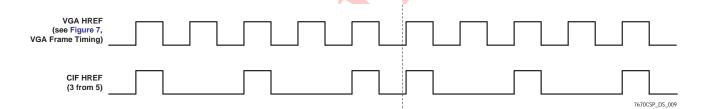

Figure 7 QVGA Frame Timing

Figure 8 QQVGA Frame Timing

Figure 9 CIF Frame Timing

Figure 10 QCIF Frame Timing



Figure 11 RGB 565 Output Timing Diagram

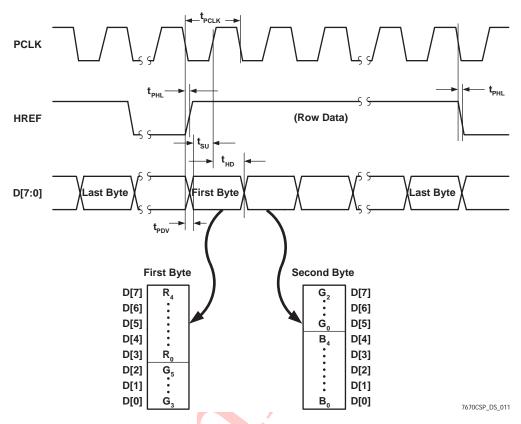


Figure 12 RGB 555 Output Timing Diagram

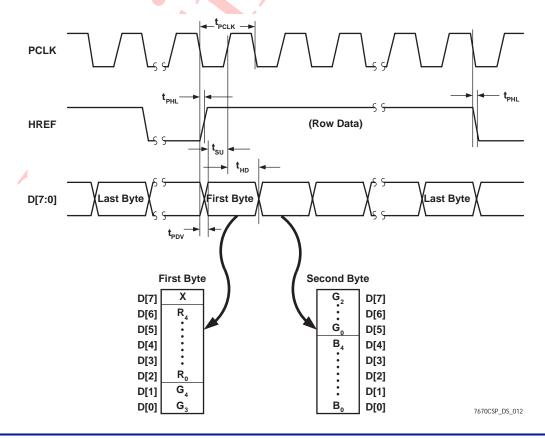
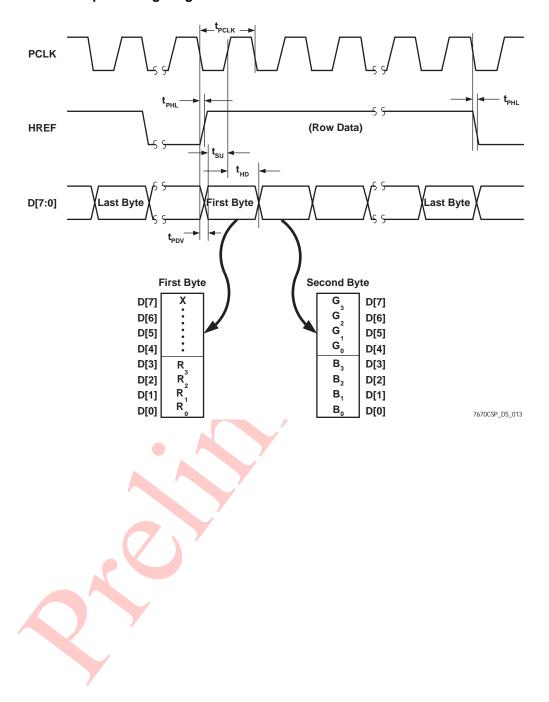



Figure 13 RGB 444 Output Timing Diagram

Register Set

Table 5 provides a list and description of the Device Control registers contained in the OV7670/OV7171. For all register Enable/Disable bits, ENABLE = 1 and DISABLE = 0. The device slave addresses are 42 for write and 43 for read.

Table 5 Device Control Register List

Address (Hex)	Register Name	Default (Hex)	R/W	Description
00	GAIN	00	RW	AGC – Gain control gain setting Bit[7:0]: AGC[7:0] (see VREF[7:6] (0x03) for AGC[9:8]) • Range: [00] to [FF]
01	BLUE	80	RW	AWB – Blue channel gain setting • Range: [00] to [FF]
02	RED	80	RW	AWB – Red channel gain setting • Range: [00] to [FF]
03	VREF	00	RW	Vertical Frame Control Bit[7:6]: AGC[9:8] (see GAIN[7:0] (0x00) for AGC[7:0]) Bit[5:4]: Reserved Bit[3:2]: VREF end low 2 bits (high 8 bits at VSTOP[7:0] Bit[1:0]: VREF start low 2 bits (high 8 bits at VSTRT[7:0]
04	COM1	00	RW	Common Control 1 Bit[7]: Reserved Bit[6]: CCIR656 format 0: Disable 1: Enable Bit[5:2]: Reserved Bit[1:0]: AEC low 2 LSB (see registers AECHH for AEC[15:10] and AECH for AEC[9:2])
05	BAVE	00	RW	U/B Average Level Automatically updated based on chip output format
06	GbAVE	00	RW	Y/Gb Average Level Automatically updated based on chip output format
07	АЕСНН	00	RW	Exposure Value - AEC MSB 5 bits Bit[7:6]: Reserved Bit[5:0]: AEC[15:10] (see registers AECH for AEC[9:2] and COM1 for AEC[1:0])
08	RAVE	00	RW	V/R Average Level Automatically updated based on chip output format
09	COM2	01	RW	Common Control 2 Bit[7:5]: Reserved Bit[4]: Soft sleep mode Bit[3:2]: Reserved Bit[1:0]: Output drive capability 00: 1x 01: 2x 10: 3x 11: 4x

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
0A	PID	76	R	Product ID Number MSB (Read only)
0B	VER	73	R	Product ID Number LSB (Read only)
0C	СОМЗ	00	RW	Bit[7]: Reserved Bit[6]: Output data MSB and LSB swap Bit[5]: Tri-state option for output clock at power-down period 0: Tri-state at this period 1: No tri-state at this period Bit[4]: Tri-state option for output data at power-down period 0: Tri-state at this period 1: No tri-state at this period 1: No tri-state at this period Bit[3]: Scale enable 0: Disable 1: Enable - if set to a pre-defined format (see
0D	COM4	00	RW	Common Control 4 Bit[7:6]: Reserved Bit[5:4]: Average option (must be same value as COM17[7:6]) 00: Full window 01: 1/2 window 10: 1/4 window 11: 1/4 window Bit[3:0]: Reserved
0E	COM5	01	RW	Common Control 5 Bit[7:0]: Reserved
0F	COM6	43	RW	Common Control 6 Bit[7]: Output of optical black line option 0: Disable HREF at optical black 1: Enable HREF at optical black Bit[6:2]: Reserved Bit[1]: Reset all timing when format changes 0: No reset 1: Resets timing Bit[0]: Reserved
10	AECH	40	RW	Exposure Value Bit[7:0]: AEC[9:2] (see registers AECHH for AEC[15:10] and COM1 for AEC[1:0])

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
11	CLKRC	80	RW	Internal Clock Bit[7]: Reserved Bit[6]: Use external clock directly (no clock pre-scale available) Bit[5:0]: Internal clock pre-scalar F(internal clock) = F(input clock)/(Bit[5:0]+1) Range: [0 0000] to [1 1111]
12	COM7	00	RW	Common Control 7 Bit[7]: SCCB Register Reset 0: No change 1: Resets all registers to default values Bit[6]: Reserved Bit[5]: Output format - CIF selection Bit[4]: Output format - QVGA selection Bit[3]: Output format - RGB selection Bit[2]: Output format - RGB selection (see below) Bit[1]: Color bar 0: Disable 1: Enable Bit[0]: Output format - Raw RGB (see below) COM7[2] COM7[0] YUV 0 0 0 RGB 1 0 Bayer RAW 0 1 Processed Bayer RAW 1
13	COM8	8F	RW	Common Control 8 Bit[7]: Enable fast AGC/AEC algorithm Bit[6]: AEC - Step size limit 0: Step size is limited to vertical blank 1: Unlimited step size Bit[5]: Banding filter ON/OFF - In order to turn ON the banding filter, BD50ST (0x9D) or BD60ST (0x9E) must be set to a non-zero value. 0: OFF 1: ON Bit[4:3]: Reserved Bit[2]: AGC Enable Bit[1]: AWB Enable Bit[0]: AEC Enable

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
14	СОМ9	4A	RW	Common Control 9 Bit[7]: Reserved Bit[6:4]: Automatic Gain Ceiling - maximum AGC value 000: 2x 001: 4x 010: 8x 011: 16x 100: 32x 101 64x 110: 128x 111: Not allowed Bit[3:1]: Reserved Bit[0]: Freeze AGC/AEC
15	COM10	00	RW	Common Control 10 Bit[7]: Reserved Bit[6]: HREF changes to HSYNC Bit[5]: PCLK output option 0: Free running PCLK 1: PCLK does not toggle during horizontal blank Bit[4]: PCLK reverse Bit[3]: HREF reverse Bit[2]: VSYNC option 0: VSYNC changes on falling edge of PCLK 1: VSYNC changes on rising edge of PCLK Bit[1]: VSYNC negative Bit[0]: HSYNC negative
16	RSVD	XX	-	Reserved
17	HSTART	11	RW	Output Format - Horizontal Frame (HREF column) start high 8-bit (low 3 bits are at HREF[2:0])
18	HSTOP	61	RW	Output Format - Horizontal Frame (HREF column) end high 8-bit (low 3 bits are at HREF[5:3])
19	VSTRT	03	RW	Output Format - Vertical Frame (row) start high 8-bit (low 2 bits are at VREF[1:0])
1A	VSTOP	7B	RW	Output Format - Vertical Frame (row) end high 8-bit (low 2 bits are at VREF[3:2])
1B	PSHFT	00	RW	Data Format - Pixel Delay Select (delays timing of the D[7:0] data relative to HREF in pixel units) • Range: [00] (no delay) to [FF] (256 pixel delay which accounts for whole array)
1C	MIDH	7F	R	Manufacturer ID Byte – High (Read only = 0x7F)
1D	MIDL	A2	R	Manufacturer ID Byte – Low (Read only = 0xA2)

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
1E	MVFP	01	RW	Mirror/VFlip Enable Bit[7:6]: Reserved Bit[5]: Mirror 0: Normal image 1: Mirror image Bit[4]: VFlip enable 0: Normal image 1: Vertically flip image Bit[3]: Reserved Bit[2]: Black sun enable Bit[1:0]: Reserved
1F	LAEC	00	RW	Reserved
20	ADCCTR0	04	RW	ADC Control Bit[7:4]: Reserved Bit[3]: ADC range adjustment 0: 1x range 1: 1.5x range Bit[2:0]: ADC reference adjustment 000: 0.8x 100: 1x 111: 1.2x
21	ADCCTR1	02	RW	Bit[7:0]: Reserved
22	ADCCTR2	01	RW	Bit[7:0]: Reserved
23	ADCCTR3	00	RW	Bit[7:0]: Reserved
24	AEW	75	RW	AGC/AEC - Stable Operating Region (Upper Limit)
25	AEB	63	RW	AGC/AEC - Stable Operating Region (Lower Limit)
26	VPT	D4	RW	AGC/AEC Fast Mode Operating Region Bit[7:4]: High nibble of upper limit of fast mode control zone Bit[3:0]: High nibble of lower limit of fast mode control zone
27	BBIAS	80	RW	B Channel Signal Output Bias (effective only when COM6[3] = 1) Bit[7]: Bias adjustment sign 0: Add bias 1: Subtract bias Bit[6:0]: Bias value of 10-bit range
28	GbBIAS	80	RW	Gb Channel Signal Output Bias (effective only when COM6[3] = 1) Bit[7]: Bias adjustment sign 0: Add bias 1: Subtract bias Bit[6:0]: Bias value of 10-bit range
29	RSVD	XX	_	Reserved
2A	EXHCH	00	RW	Dummy Pixel Insert MSB Bit[7:4]: 4 MSB for dummy pixel insert in horizontal direction Bit[3:2]: HSYNC falling edge delay 2 MSB Bit[1:0]: HSYNC rising edge delay 2 MSB

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
2B	EXHCL	00	RW	Dummy Pixel Insert LSB 8 LSB for dummy pixel insert in horizontal direction
2C	RBIAS	80	RW	R Channel Signal Output Bias (effective only when COM6[3] = 1) Bit[7]: Bias adjustment sign 0: Add bias 1: Subtract bias Bit[6:0]: Bias value of 10-bit range
2D	ADVFL	00	RW	LSB of Insert Dummy Lines in Vertical Direction (1 bit equals 1 line)
2E	ADVFH	00	RW	MSB of Insert Dummy Lines in Vertical Direction
2F	YAVE	00	RW	Y/G Channel Average Value
30	HSYST	08	RW	HSYNC Rising Edge Delay (low 8 bits)
31	HSYEN	30	RW	HSYNC Falling Edge Delay (low 8 bits)
32	HREF	80	RW	HREF Control Bit[7:6]: HREF edge offset to data output Bit[5:3]: HREF end 3 LSB (high 8 MSB at register HSTOP) Bit[2:0]: HREF start 3 LSB (high 8 MSB at register HSTART)
33	CHLF	08	RW	Array Current Control Bit[7:0]: Reserved
34	ARBLM	11	RW	Array Reference Control Bit[7:0]: Reserved
35-36	RSVD	XX	_	Reserved
37	ADC	3F	RW	ADC Control Bit[7:0]: Reserved
38	ACOM	01	RW	ADC and Analog Common Mode Control Bit[7:0]: Reserved
39	OFON	00	RW	ADC Offset Control Bit[7:0]: Reserved

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W		Description
				Line Buffer Te	est Option
				Bit[7:6]:	Reserved
				Bit[5]:	Negative image enable
					0: Normal image
					1: Negative image
				Bit[4]:	UV output value
					0: Use normal UV output
					Use fixed UV value set in registers MANU and MANV as UV output instead of chip output
				Bit[3]:	Output sequence (use with register COM13[0] (0x3D)) TSLB[3], COM13[0]:
3A	TSLB	0D	RW		00: YUYV
0	. 522	0.2			01: YVYU
					10: UYVY
				D:40.41	11: VYUY
				Bit[2:1]:	Reserved
				Bit[0]:	Auto output window
					0: Sensor DOES NOT automatically set window after resolution change. The companion backend
					processor can adjust the output window immediately after changing the resolution
					1: Sensor automatically sets output window when
					resolution changes. After resolution changes, the
				7	companion backend processor must adjust the output window after the next VSYNC pulse.
				Common Cor	ntrol 11
				Bit[7]:	Night mode
					0: Night mode disable
					1: Night mode enable - The frame rate is reduced
					automatically while the minimum frame rate is limited
					by COM11[6:5]. Also, ADVFH and ADVFL will be automatically updated.
				Bit[6:5]:	Minimum frame rate of night mode
					00: Same as normal mode frame rate
					01: 1/2 of normal mode frame rate
					10: 1/4 of normal mode frame rate
3B	COM11	00	RW	D:4[4].	11: 1/8 of normal mode frame rate
				Bit[4]:	D56_Auto
		/			0: Disable 50/60 Hz auto detection 1: Enable 50/60 Hz auto detection
	7			Bit[3]:	Banding filter value select (effective only when
					COM11[4] = 0)
					0: Select BD60ST[7:0] (0x9E) as Banding Filter Value
				D:#IO1.	1: Select BD50ST[7:0] (0x9D) as Banding Filter Value
				Bit[2]: Bit[1]:	Reserved Exposure timing can be less than limit of banding filter
				ւ թյուն լայ	when light is too strong
				Bit[0]:	Reserved

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
3C	COM12	68	RW	Common Control 12 Bit[7]: HREF option 0: No HREF when VSYNC is low 1: Always has HREF Bit[6:0]: Reserved
3D	COM13	88	RW	Common Control 13 Bit[7]: Gamma enable Bit[6]: UV saturation level - UV auto adjustment. Result is saved in register SATCTR[3:0] (0xC9) Bit[5:1]: Reserved Bit[0]: UV swap (use with register TSLB[3] (0x3A)) TSLB[3], COM13[0]: 00: Y U Y V 01: Y V Y U 10: U Y V Y 11: V Y U Y
3E	COM14	00	RW	Common Control 14 Bit[7:5]: Reserved Bit[4]: DCW and scaling PCLK enable 0: Normal PCLK 1: DCW and scaling PCLK, controlled by register COM14[2:0] and SCALING_PCLK_DIV[3:0] (0x73)) Bit[3]: Manual scaling enable for pre-defined resolution modes such as CIF, QCIF, and QVGA 0: Scaling parameter cannot be adjusted manually 1: Scaling parameter can be adjusted manually Bit[2:0]: PCLK divider (only when COM14[4] = 1) 000: Divided by 1 001: Divided by 2 010: Divided by 4 011: Divided by 8 100: Divided by 16 101~111: Not allowed
3F /	EDGE	00	RW	Edge Enhancement Adjustment Bit[7:5]: Reserved Bit[4:0]: Edge enhancement factor
40	COM15	CO	RW	Common Control 15 Bit[7:6]: Data format - output full range enable 0x: Output range: [10] to [F0] 10: Output range: [01] to [FE] 11: Output range: [00] to [FF] Bit[5:4]: RGB 555/565 option (must set COM7[2] = 1 and COM7[0] = 0) x0: Normal RGB output 01: RGB 565, effective only when RGB444[1] is low 11: RGB 555, effective only when RGB444[1] is low Bit[3:0]: Reserved

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description		
				Common Control 16		
41	COM16	08	RW	Bit[7:6]: Reserved Bit[5]: Enable edge enhancement threshold auto-adjustment for YUV output (result is saved in register EDGE[4:0] (0x3F) and range is controlled by registers REG75[4:0] (0x75) and REG76[4:0] (0x76)) 0: Disable 1: Enable Bit[4]: De-noise threshold auto-adjustment (result is saved in register DNSTH (0x4C) and range is controlled by register REG77[7:0] (0x77)) 0: Disable 1: Enable Bit[3]: AWB gain enable Bit[2]: Reserved		
				Bit[1]: Color matrix coefficient double option 0: Original matrix 1: Double of original matrix Bit[0]: Reserved		
42	COM17	00	RW	Common Control 17 Bit[7:6]: AEC window must be the same value as COM4[5:4] 00: Normal 01: 1/2 10: 1/4 11: 1/4 Bit[5:4]: Reserved Bit[3]: DSP color bar enable 0: Disable 1: Enable Bit[2:0]: Reserved		
43	AWBC1	14	RW	Reserved		
44	AWBC2	F0	RW	Reserved		
45	AWBC3	45	RW	Reserved		
46	AWBC4	61	RW	Reserved		
47	AWBC5	5 1	RW	Reserved		
48	AWBC6	79	RW	Reserved		
49-4A	RSVD	XX	_	Reserved		
4B	REG4B	00	RW	Register 4B Bit[7:1]: Reserved Bit[0]: UV average enable		
4C	DNSTH	00	RW	De-noise Strength		
4D-4E	RSVD	XX	_	Reserved		
4F	MTX1	40	RW	Matrix Coefficient 1		
50	MTX2	34	RW	Matrix Coefficient 2		

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
51	MTX3	0C	RW	Matrix Coefficient 3	
52	MTX4	17	RW	Matrix Coefficient 4	
53	MTX5	29	RW	Matrix Coefficient 5	
54	MTX6	40	RW	Matrix Coefficient 6	
55	BRIGHT	00	RW	Brightness Control	
56	CONTRAS	40	RW	Contrast Control	
57	CONTRAS- CENTER	80	RW	Contrast Center	
58	MTXS	1E	RW	Matrix Coefficient Sign for Coefficient 5 to 0 Bit[7]: Auto contrast center enable 0: Disable, center is set by register	
59-61	RSVD	XX	_	AWB Control	
62	LCC1	00	RW	Lens Correction Option 1 - X Coordinate of Lens Correction Center Relative to Array Center	
63	LCC2	00	RW	Lens Correction Option 2 - Y Coordinate of Lens Correction Center Relative to Array Center	
64	LCC3	50	RW	Lens Correction Option 3 G Channel Compensation Coefficient when LCC5[2] (0x66) is 1 R, G, and B Channel Compensation Coefficient when LCC5[2] (0x66) is 0	
65	LCC4	30	RW	Lens Correction Option 4 - Radius of the circular section where no compensation applies	
66	LCC5	00	RW	Lens Correction Control 5 Bit[7:3]: Reserved Bit[2]: Lens correction control select 0: R, G, and B channel compensation coefficient is set by register LCC3 (0x64) 1: R, G, and B channel compensation coefficient is set by registers LCC6, LCC3, and LCC7, respectively Bit[1]: Reserved Bit[0]: Lens correction enable 0: Disable 1: Enable	
67	MANU	80	RW	Manual U Value (effective only when register TSLB[4] is high)	
68	MANV	80	RW	Manual V Value (effective only when register TSLB[4] is high)	

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
69	GFIX	00	RW	Fix Gain Control Bit[7:6]: Fix gain for Gr channel 00: 1x 01: 1.25x 10: 1.5x 11: 1.75x Bit[5:4]: Fix gain for Gb channel 00: 1x 01: 1.25x 10: 1.5x 11: 1.75x Bit[3:2]: Fix gain for R channel 00: 1x 01: 1.25x 10: 1.5x 11: 1.75x Bit[1:0]: Fix gain for B channel 00: 1x 01: 1.5x 11: 1.75x Bit[1:0]: Fix gain for B channel 00: 1x 01: 1.5x 11: 1.75x
6A	GGAIN	00	RW	G Channel AWB Gain
6B	DBLV	OA OA	RW	Bit[7:6]: PLL control 00: Bypass PLL 01: Input clock x4 10: Input clock x6 11: Input clock x8 Bit[5]: Reserved Bit[4]: Regulator control 0: Enable internal regulator 1: Bypass internal regulator Bit[3:0]: Reserved
6C	AWBCTR3	02	RW	AWB Control 3
6D /	AWBCTR2	55	RW	AWB Control 2
6E	AWBCTR1	C0	RW	AWB Control 1
6F	AWBCTR0	9A	RW	AWB Control 0
70	SCALING_ XSC	ЗА	RW	Bit[7]: Test_pattern[0] - works with test_pattern[1] test_pattern (SCALING_XSC[7], SCALING_YSC[7]): 00: No test output 01: Shifting "1" 10: 8-bar color bar 11: Fade to gray color bar Bit[6:0]: Horizontal scale factor

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
71	SCALING_ YSC	35	RW	Bit[7]: Test_pattern[1] - works with test_pattern[0] test_pattern (SCALING_XSC[7], SCALING_YSC[7]): 00: No test output 01: Shifting "1" 10: 8-bar color bar 11: Fade to gray color bar Bit[6:0]: Vertical scale factor
72	SCALING_ DCWCTR	11	RW	Bit[7]: Vertical average calculation option 0: Vertical truncation 1: Vertical rounding Bit[6]: Vertical down sampling option 0: Vertical truncation 1: Vertical rounding Bit[5:4]: Vertical down sampling rate 00: No vertical down sampling 01: Vertical down sample by 2 10: Vertical down sample by 4 11: Vertical down sample by 8 Bit[3]: Horizontal average calculation option 0: Horizontal truncation 1: Horizontal down sampling option 0: Horizontal down sampling option 0: Horizontal down sampling option 0: Horizontal down sampling bit[1:0]: Horizontal down sampling 01: Horizontal down sample by 2 10: Horizontal down sample by 4 11: Horizontal down sample by 8
73	SCALING PCLK_DIV	00	RW	Bit[7:4]: Reserved Bit[3]: Bypass clock divider for DSP scale control 0: Enable clock divider 1: Bypass clock divider Bit[2:0]: Clock divider control for DSP scale control (valid only when COM14[3] = 1). Should change with COM14[2:0]. 000: Divided by 1 001: Divided by 2 010: Divided by 4 011: Divided by 8 100: Divided by 16 101~111: Not allowed

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
74	REG74	00	RW	Register 74 Bit[7:5]: Reserved Bit[4]: DG_Manu 0: Digital gain control by VREF[7:6] 1: Digital gain control by REG74[1:0] Bit[3:2]: Reserved Bit[1:0]: Digital gain manual control 00: Bypass 01: 1x 10: 2x 11: 4x
75	REG75	0F	RW	Register 75 Bit[7:5]: Reserved Bit[4:0]: Edge enhancement lower limit
76	REG76	01	RW	Register 76 Bit[7]: Black pixel correction enable 0: Disable 1: Enable Bit[6]: White pixel correction enable 0: Disable 1: Enable Bit[5]: Reserved Bit[4:0]: Edge enhancement higher limit
77	REG77	10	RW	Register 77 Bit[7:0]: De-noise offset
78-79	RSVD	XX	-	Reserved
7A	SLOP	24	RW	Gamma Curve Highest Segment Slope - calculated as follows: SLOP[7:0] = (0x100 - GAM15[7:0]) x 4/3
7B	GAM1	04	RW	Gamma Curve 1st Segment Input End Point 0x04 Output Value
7C	GAM2	07	RW	Gamma Curve 2nd Segment Input End Point 0x08 Output Value
7D	GAM3	10	RW	Gamma Curve 3rd Segment Input End Point 0x10 Output Value
7E	GAM4	28	RW	Gamma Curve 4th Segment Input End Point 0x20 Output Value
7F	GAM5	/ 36	RW	Gamma Curve 5th Segment Input End Point 0x28 Output Value
80	GAM6	44	RW	Gamma Curve 6th Segment Input End Point 0x30 Output Value
81	GAM7	52	RW	Gamma Curve 7th Segment Input End Point 0x38 Output Value
82	GAM8	60	RW	Gamma Curve 8th Segment Input End Point 0x40 Output Value
83	GAM9	6C	RW	Gamma Curve 9th Segment Input End Point 0x48 Output Value
84	GAM10	78	RW	Gamma Curve 10th Segment Input End Point 0x50 Output Value
85	GAM11	8C	RW	Gamma Curve 11th Segment Input End Point 0x60 Output Value
86	GAM12	9E	RW	Gamma Curve 12th Segment Input End Point 0x70 Output Value
87	GAM13	BB	RW	Gamma Curve 13th Segment Input End Point 0x90 Output Value
88	GAM14	D2	RW	Gamma Curve 14th Segment Input End Point 0xB0 Output Value

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
89	GAM15	E5	RW	Gamma Curve 15th Segment Input End Point 0xD0 Output Value	
8A-8B	RSVD	XX	_	Reserved	
8C	RGB444	00	RW	Bit[7:2]: Reserved Bit[1]: RGB444 enable, effective only when COM15[4] is high 0: Disable 1: Enable Bit[0]: RGB444 word format 0: xR GB 1: RG Bx	
8D-91	RSVD	XX	-	Reserved	
92	DM_LNL	00	RW	Dummy Line low 8 bits	
93	DM_LNH	00	RW	Dummy Line high 8 bits	
94	LCC6	50	RW	Lens Correction Option 6 (effective only when LCC5[2] is high)	
95	LCC7	50	RW	Lens Correction Option 7 (effective only when LCC5[2] is high)	
96-9C	RSVD	XX	_	Reserved	
9D	BD50ST	99	RW	50 Hz Banding Filter Value (effective only when COM8[5] is high and COM11[3] is high)	
9E	BD60ST	7F	RW	60 Hz Banding Filter Value (effective only when COM8[5] is high and COM11[3] is low)	
9F	HAECC1	C0	RW	Histogram-based AEC/AGC Control 1	
A0	HAECC2	90	RW	Histogram-based AEC/AGC Control 2	
A1	RSVD	XX	-	Reserved	
A2	SCALING_ PCLK_ DELAY	02	RW	Pixel Clock Delay Bit[7]: Reserved Bit[6:0]: Scaling output delay	
А3	RSVD	XX	-	Reserved	
A4	NT_CTRL	00	RW	Bit[7:4]: Reserved Bit[3]: Auto frame rate adjustment control 0: Double exposure time 1: Reduce frame rate by half Bit[2]: Reserved Bit[1:0]: Auto frame rate adjustment switch point 00: Insert dummy row at 2x gain 01: Insert dummy row at 4x gain 10: Insert dummy row at 8x gain	
A5	BD50MAX	0F	RW	50Hz Banding Step Limit	
A6	HAECC3	F0	RW	Histogram-based AEC/AGC Control 3	
A7	HAECC4	C1	RW	Histogram-based AEC/AGC Control 4	
A8	HAECC5	F0	RW	Histogram-based AEC/AGC Control 5	
A9	HAECC6	C1	RW	Histogram-based AEC/AGC Control 6	

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
AA	HAECC7	14	RW	Bit[7]: AEC algorithm selection 0: Average-based AEC algorithm 1: Histogram-based AEC algorithm Bit[6:0]: Reserved	
AB	BD60MAX	0F	RW	60Hz Banding Step Limit	
AC	STR-OPT	00	RW	Register AC Bit[7]: Strobe enable Bit[6]: R / G / B gain controlled by STR_R (0xAD) / STR_G (0xAE) / STR_B (0xAF) for LED output frame Bit[5:4]: Xenon mode option 00: 1 row 01: 2 rows 10: 3 rows 11: 4 rows Bit[3:2]: Reserved Bit[1:0]: Mode select 00: Xenon 01: LED 1 1x: LED 2	
AD	STR_R	80	RW	R Gain for LED Output Frame	
AE	STR_G	80	RW	G Gain for LED Output Frame	
AF	STR_B	80	RW	B Gain for LED Output Frame	
В0	RSVD	XX	1	Reserved	
B1	ABLC1	00	RW	Bit[7:3]: Reserved Bit[2]: ABLC enable 0: Disable ABLC function 1: Enable ABLC function Bit[1:0]: Reserved	
B2	RSVD	XX	-	Reserved	
B3	THL_ST	80	RW	ABLC Target	
B4	RSVD	XX	_	Reserved	
B5	THL_DLT	04	RW	ABLC Stable Range	
B6-BD	RSVD	XX	-	Reserved	
BE	AD-CHB	00	RW	Blue Channel Black Level Compensation Bit[7]: Reserved Bit[6]: Sign bit Bit[5:0]: Blue channel black level compensation	
BF	AD-CHR	00	RW	Red Channel Black Level Compensation Bit[7]: Reserved Bit[6]: Sign bit Bit[5:0]: Red channel black level compensation	

Table 5 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
C0	AD-CHGb	00	RW	Gb Channel Black Level Compensation Bit[7]: Reserved Bit[6]: Sign bit Bit[5:0]: Gb channel black level compensation
C1	AD-CHGr	00	RW	Gr Channel Black Level Compensation Bit[7]: Reserved Bit[6]: Sign bit Bit[5:0]: Gr channel black level compensation
C2-C8	RSVD	XX	_	Reserved
C9	SATCTR	C0	RW	Saturation Control Bit[7:4]: UV saturation control min Bit[3:0]: UV saturation control result

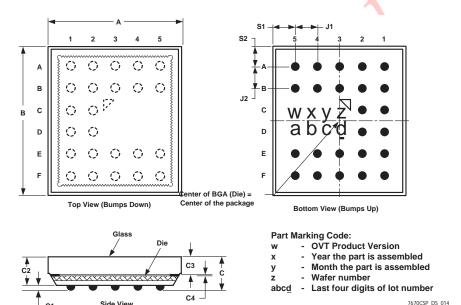
NOTE: All other registers are factory-reserved. Please contact OmniVision Technologies for reference register settings.

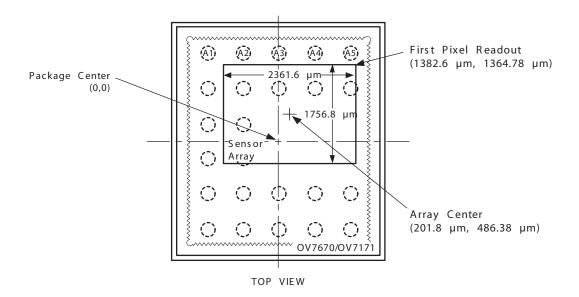
Package Specifications

The OV7670/OV7171 uses a 24-ball Chip Scale Package 2 (CSP2). Refer to Figure 14 for package information, Table 6 for package dimensions and Figure 15 for the array center on the chip.

Note: For OVT devices that are lead-free, all part marking letters are lower case. Underlining the last digit of the lot number indicates CSP2 is used.

Figure 14 OV7670/OV7171 Package Specifications




Table 6 OV7670/OV7171 Package Dimensions

Parameter	Symbol	Minimum	Nominal	Maximum	Unit
Package Body Dimension X	Α	3760	3785	3810	μm
Package Body Dimension Y	В	4210	4235	4260	μm
Package Height	С	825	885	945	μm
Ball Height	C1	130	160	190	μm
Package Body Thickness	C2	680	725	770	μm
Cover Glass Thickness	C3	375	400	425	μm
Airgap Between Cover Glass and Sensor	C4	30	45	60	μm
Ball Diameter	D	270	300	330	μm
Total Pin Count	N		24		
Pin Count X-axis	N1		5		
Pin Count Y-axis	N2		6		
Pins Pitch X-axis	J1		620		μm
Pins Pitch Y-axis	J2		620		μm
Edge-to-Pin Center Distance Analog X	S1	623	653	683	μm
Edge-to-Pin Center Distance Analog Y	S2	538	568	598	μm

Sensor Array Center

Figure 15 OV7670/OV7171 Sensor Array Center

NOTES: 1. This drawing is not to scale and is for reference only.

2. As most optical assemblies invert and mirror the image, the chip is typically mounted with pins A1 to A5 oriented down on the PCB.

7670CSP_DS_015

IR Reflow Ramp Rate Requirements

OV7670/OV7171 Lead-Free Packaged Devices

Note: For OVT devices that are lead-free, all part marking letters are lower case

Figure 16 IR Reflow Ramp Rate Requirements

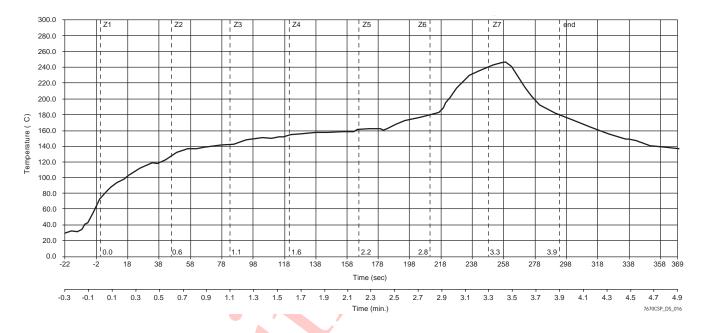


Table 7 Reflow Conditions

Condition	Exposure
Average Ramp-up Rate (30°C to 217°C)	Less than 3°C per second
> 100°C	Between 330 - 600 seconds
> 150°C	At least 210 seconds
> 217°C	At least 30 seconds (30 ~ 120 seconds)
Peak Temperature	245°C
Cool-down Rate (Peak to 50°C)	Less than 6°C per second
Time from 30°C to 245°C	No greater than 390 seconds

Note:

- All information shown herein is current as of the revision and publication date. Please refer to the OmniVision web site (http://www.ovt.com) to obtain the current versions of all documentation.
- OmniVision Technologies, Inc. reserves the right to make changes to their products or to discontinue any product or service without further notice (It is advisable to obtain current product documentation prior to placing orders).
- Reproduction of information in OmniVision product documentation and specifications is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. In such cases, OmniVision is not responsible or liable for any information reproduced.
- This document is provided with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. Furthermore, OmniVision Technologies, Inc. disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document. No license, expressed or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.
- 'OmniPixel', 'VarioPixel, 'OmniVision', and the OmniVision logo are registered trademarks of OmniVision Technologies, Inc. 'CameraChip' is a trademark of OmniVision Technologies, Inc. All other trade, product or service names referenced in this release may be trademarks or registered trademarks of their respective holders. Third-party brands, names, and trademarks are the property of their respective owners.

For further information, please feel free to contact OmniVision at info@ovt.com.

OmniVision Technologies, Inc. 1341 Orleans Drive Sunnyvale, CA USA (408) 542-3000

Document Title: OV7670 Datasheet **Version:** 1.0

DESCRIPTION OF CHANGES

Initial Release

Document Title: OV7670 Datasheet **Version:** 1.01

DESCRIPTION OF CHANGES

The following changes were made to version 1.0:

• Under LED and Strobe Flash Control Output section on page 3, changed text from "Refer to the OmniVision Technologies LED Strobe Support document" to "The OV7670 has a Strobe mode that allows it to work with an external flash and LED"

Document Title: OV7670/OV7171 Datasheet **Version:** 1.1

DESCRIPTION OF CHANGES

The following changes were made to version 1.01:

- Under Features on page 1, changed bulleted item from "Supports VGA, CIF, and ... RGB565/555), ..." to "Supports VGA, CIF, and ... RGB565/555/444), ..."
- Under Key Specifications on page 1, added table footnote for I/O Power Supply that reads "I/O power should be 2.45V or higher when using the internal regulator for Core (1.8V); otherwise, it is necessary to provide an external 1.8V for the Core power supply."
- Under Key Specifications on page 1, added "RGB444" to Output Formats (8-bit)
- Under Key Specifications on page 1, changed Chief Ray Angle from "TBD" to "25°"
- Under Key Specifications on page 1, changed Sensitivity from "1.1 V/Lux-sec" to "1.3 V/Lux-sec"
- Under Key Specifications on page 1, changed S/N Ratio from "40 dB" to "46 dB"
- Under Key Specifications on page 1, changed Dynamic Range from "TBD" to "52 dB"
- In Figure 13 on page 24, changed callout C3 to measure from thickness of glass and added callout C4 to measure airgap from glass to die.
- In Table 6 on page 24, changed C3 parameter name from "Thickness of Glass Surface to Wafer" to "Cover Glass Thickness"
- In Table 6 on page 24, changed C3 Minimum, Nominal, and Maximum specifications from "425, 445, and 465" to "375, 400, and 425"
- In Table 6 on page 24, added C4 parameter, Airgap Between Cover Glass and Sensor, and Minimum, Nominal, and Maximum specifications "30, 45, and 60", respectively
- In Table 5 on page 21, changed address of register GAM1 from 7A to 7B
- In Table 5 on page 22, changed address of register GAM2 from 7B to 7C
- In Table 5 on page 22, changed address of register GAM3 from 7C to 7D
- In Table 5 on page 22, changed address of register GAM4 from 7D to 7E
- In Table 5 on page 22, changed address of register GAM5 from 7E to 7F
- In Table 5 on page 22, changed address of register GAM6 from 7F to 80
- In Table 5 on page 22, changed address of register GAM7 from 80 to 81
- In Table 5 on page 22, changed address of register GAM8 from 89 to 82
- In Table 5 on page 22, changed address of register GAM9 from 89 to 83
- In Table 5 on page 22, changed address of register GAM10 from 89 to 84
- In Table 5 on page 22, changed address of register GAM11 from 89 to 85
- In Table 5 on page 21, add register SLOP (0x7A)

- In Figure 1 on page 1, changed name for pin F2 from "RESET" to "RESET#"
- In Figure 2 on page 2, changed callout "RESET" to "RESET#"
- In Table 1 on page 4, changed callout name for pin F2 from "RESET" to "RESET#"
- In Table 1 on page 4, changed pin description for pin F2 from "0: Normal mode; 1: Reset mode" to "0: Reset mode; 1: Normal mode"
- In Table 1 on page 4, changed pin type for pin F2 from "Input (0)" to "Input"

Document Title: OV7670 Datasheet **Version:** 1.2

DESCRIPTION OF CHANGES

The following changes were made to version 1.1:

- On page 10, added Figure 13, RGB 444 Output Timing Diagram
- In Table 5 on page 12, changed default value for register VER (0x0B) from "70" to "73"
- In Table 5 on page 18, changed description of register bits COM15[5:4] (0x40) by adding ", effective only when RGB444[1] is low" to 01 and 11 descriptions
- In Table 5 on page 21, changed description for register bits DBLV[7:6] (0x6B) from:
 - 10: Input clock x8
 - 11: Input clock x16

to

- 10: Input clock x6
- 11: Input clock x8
- In Table 5 on page 21, changed description for register bits DBLV[3:0] (0x6B) to "Reserved"
- In Table 5 on page 23, changed address for reserved registers from "8A-91" to "8A-8B"
- In Table 5 on page 23, added row for register RGB444 (0x8C)
- In Table 5 on page 23, added row for reserved registers 8D-91

Document Title: OV7670 Datasheet **Version:** 1.3

DESCRIPTION OF CHANGES

The following changes were made to version 1.2:

- In Table 5 on page 11, changed default value of register VREF (0x03) from "03" to "00"
- In Table 5 on page 12, changed default value for register COM4 (0x0D) from "40" to "00"
- In Table 5 on page 12, changed description of register bit COM6[6:5] (0x0F) to "Reserved"
- In Table 5 on page 12, changed description of register bit COM6[1] (0x0F) to include:
 - 0: No reset
 - 1: Resets timing
- In Table 5 on page 13, changed description for register bit CLKRC[7] (0x11) to "Reserved"
- In Table 5 on page 15, changed default value for register MVFP (0x1E) from "00" to "01"
- In Table 5 on page 15, changed default value for register ADCCTR3 (0x23) from "80" to "00"
- In Table 5 on page 16, changed default value for register ARBLM (0x34) from "03" to "11"
- In Table 5 on page 16, changed default value for register ADC (0x37) from "04" to "3F"
- In Table 5 on page 16, changed default value for register ACOM (0x38) from "12" to "01"
- In Table 5 on page 17, changed default value for register TSLB (0x3A) from "0C" to "0D"
- In Table 5 on page 17, changed description of register bit TSLB[0] from "Reserved" to:

Bit[0]: Auto output window

- Sensor DOES NOT automatically set window after resolution change. The companion backend processor can adjust the output window immediately after changing the resolution
- 1: Sensor automatically sets output window when resolution changes. After resolution changes, the companion backend processor must adjust the output window after the next VSYNC pulse.
- In Table 5 on page 18, changed default value for register COM12 (0x3C) from "40" to "68"
- In Table 5 on page 18, changed default value for register COM13 (0x3D) from "99" to "88"
- In Table 5 on page 18, changed description of register bit COM13[0] (0x3D) from "Reserved" to:

Bit[0]: UV swap (use with register TSLB[3] (0x3A))

TSLB[3], COM13[1]:

00: YUYV

01: Y V Y U

10: UYVY

11: V Y U Y

- In Table 5 on page 18, changed description of register bit COM13[1] (0x3D) to "Reserved"
- In Table 5 on page 18, changed default value for register COM14 (0x3E) from "0E" to "00"
- In Table 5 on page 18, changed default value for register EDGE (0x3F) from "88" to "00"
- In Table 5 on page 19, changed default value for register COM16 (0x41) from "10" to "08"
- In Table 5 on page 19, changed default value for register COM17 (0x42) from "08" to "00"
- In Table 5 on page 19, changed description for register DNSTH (0x4C) from "De-noise Threshold" to "De-noise Strength"
- In Table 5 on page 20, changed description for register LCC1 (0x62) from "Lens Correction Option 1" to "Lens Correction Option 1 X Coordinate of Lens Correction Center Relative to Array Center"
- In Table 5 on page 20, changed description for register LCC2 (0x63) from "Lens Correction Option 2" to "Lens Correction Option 2 Y Coordinate of Lens Correction Center Relative to Array Center"
- In Table 5 on page 20, changed description for register LCC3 (0x64) from "Lens Correction Option 3" to:

Lens Correction Option 3

G Channel Compensation Coefficient when LCC5[2] (0x66) is 1

R, G, and B Channel Compensation Coefficient when LCC5[2] (0x66) is 0

- In Table 5 on page 20, changed default value for register LCC3 (0x64) from "10" to "50"
- In Table 5 on page 20, changed default value for register LCC4 (0x65) from "80" to "30"
- In Table 5 on page 20, changed description for register LCC4 (0x65) from "Lens Correction Option 4" to "Lens Correction Option 4 Radius of the circular section where no compensation applies"
- In Table 5 on page 20, changed description for register LCC5 (0x66) from:

Lens Correction Control

Bit[7:3]: Reserved

Bit[2]: Lens correction control select

Bit[1]: Reserved

Bit[0]: Lens correction enable

to:

Lens Correction Control

Bit[7:3]: Reserved

Bit[2]: Lens correction control select

0: R, G, and B channel compensation coefficient is set by register LCC31: R, G, and B channel compensation coefficient is set by registers LCC6,

LCC3, and LCC7, respectively

Bit[1]: Reserved

Bit[0]: Lens correction enable

0: Disable

1: Enable

- In Table 5 on page 21, changed default value for register DBLV (0x6B) from "3A" to "0A"
- In Table 5 on page 21, changed default value for register AWBCTR1 (0x6E) from "00" to "C0"
- In Table 5 on page 21, changed default value for register SCALING_XSC (0x70) from "4A" to "3A"
- In Table 5 on page 22, changed description for register SCALING_DCWCTR (0x72) from:

DCW Control

Bit[7:0]: DCW control parameter

to:

DCW Control

Bit[7]: Vertical average calculation option

0: Vertical truncation1: Vertical rounding

Bit[6]: Vertical down sampling option

0: Vertical truncation1: Vertical rounding

Bit[5:4]: Vertical down sampling rate

00: No vertical down sampling01: Vertical down sample by 210: Vertical down sample by 411: Vertical down sample by 8

Bit[3]: Horizontal average calculation option

0: Horizontal truncation

1: Horizontal rounding

Bit[2]: Horizontal down sampling option

0: Horizontal truncation1: Horizontal rounding

Bit[1:0]: Horizontal down sampling rate

00: No horizontal down sampling01: Horizontal down sample by 210: Horizontal down sample by 411: Horizontal down sample by 8

• In Table 5 on page 22, changed description for register SCALING_PCLK_DIV (0x73) from:

Bit[7:4]: Reserved

Bit[3:0]: Clock divider control for DSP scale control (valid only when COM14[3] = 1).

Should change with COM14[2:0].

0000: Divided by 1 0001: Divided by 2 0010: Divided by 4 0011: Divided by 8 0100: Divided by 16 0101~111: Not allowed

to:

Bit[7:4]: Reserved

Bit[3]: Bypass clock divider for DSP scale control

0: Enable clock divider

1: Bypass clock divider

Bit[2:0]: Clock divider control for DSP scale control (valid only when COM14[3] = 1).

Should change with COM14[2:0].

000: Divided by 1
001: Divided by 2
010: Divided by 4
011: Divided by 8
100: Divided by 16
101~111: Not allowed

• In Table 5 on page 23, changed description of register bit REG76[7] from "Reserved" to:

Bit[7]: Black pixel correction enable

0: Disable1: Enable

- In Table 5 on page 23, changed description of register bit REG76[5] to "Reserved"
- In Table 5 on page 23, changed description of register REG77 from "Offset, de-noise range control" to "De-noise offset"
- In Table 5 on page 23, changed default value for register SLOP (0x7A) from "18" to "24"
- In Table 5 on page 23, changed default value for register GAM1 (0x7B) from "02" to "04"
- In Table 5 on page 23, changed default value for register GAM3 (0x7D) from "1F" to "10"
- In Table 5 on page 23, changed default value for register GAM4 (0x7E) from "49" to "28"
- In Table 5 on page 23, changed default value for register GAM5 (0x7F) from "5A" to "36"
- In Table 5 on page 23, changed default value for register GAM6 (0x80) from "6A" to "44"
- In Table 5 on page 23, changed default value for register GAM7 (0x81) from "79" to "52"
- In Table 5 on page 23, changed default value for register GAM8 (0x82) from "87" to "60"
- In Table 5 on page 23, changed default value for register GAM9 (0x83) from "94" to "6C"
- In Table 5 on page 23, changed default value for register GAM10 (0x84) from "9F" to "78"

- In Table 5 on page 23, changed default value for register GAM11 (0x85) from "AF" to "8C"
- In Table 5 on page 23, changed default value for register GAM12 (0x86) from "BB" to "9E"
- In Table 5 on page 23, changed default value for register GAM13 (0x87) from "CF" to "BB"
- In Table 5 on page 23, changed default value for register GAM14 (0x88) from "EE" to "D2"
- In Table 5 on page 24, changed default value for register GAM15 (0x89) from "EE" to "E5"
- In Table 5 on page 24, changed name, default, R/W and description of register 0x9F from "", "XX", "–", and "Histogram-based AEC/AGC Control" to "HAECC1", "C0", "RW", and "Histogram-based AEC/AGC Control 1", respectively
- In Table 5 on page 24, changed name, default, R/W and description of register 0xA0 from "", "XX", "–", and "Histogram-based AEC/AGC Control" to "HAECC2", "90", "RW", and "Histogram-based AEC/AGC Control 2", respectively
- In Table 5 on page 24, changed name and description of register 0xA1 from "" and "Histogram-based AEC/AGC Control" to "RSVD" and "Reserved", respectively
- In Table 5 on page 24, changed name, default, R/W and description of register 0xA2 to:

SCALING PCLK DELAY 02 RW Pixel Clock Delay

Bit[7]: Reserved

Bit[6:0]: Scaling output delay

- In Table 5 on page 24, changed name and description of register 0xA3 from " " and "Histogram-based AEC/AGC Control" to "RSVD" and "Reserved", respectively
- In Table 5 on page 24, changed name, default, R/W and description of register 0xA4 to:

NT CTRL 00 RW Bit[7:4]: Reserved

Bit[3]: Auto frame rate adjustment control

0: Double exposure time

1: Reduce frame rate by half

Bit[2]: Reserved

Bit[1:0]: Auto frame rate adjustment switch

point

00: Insert dummy row at 2x gain01: Insert dummy row at 4x gain

10: Insert dummy row at 8x gain

- In Table 5 on page 24, changed name, default, R/W and description of register 0xA5 from "", "XX", "–", and "Histogram-based AEC/AGC Control" to "BD50MAX", "0F", "RW", and "50Hz Banding Step Limit", respectively
- In Table 5 on page 24, changed name, default, R/W and description of register 0xA6 from "", "XX", "–", and "Histogram-based AEC/AGC Control" to "HAECC3", "F0", "RW", and "Histogram-based AEC/AGC Control 3", respectively

- In Table 5 on page 24, changed name, default, R/W and description of register 0xA7 from "", "XX", "–", and "Histogram-based AEC/AGC Control" to "HAECC4", "C1", "RW", and "Histogram-based AEC/AGC Control 4", respectively
- In Table 5 on page 24, changed name, default, R/W and description of register 0xA8 from "", "XX", "–", and "Histogram-based AEC/AGC Control" to "HAECC5", "F0", "RW", and "Histogram-based AEC/AGC Control 5", respectively
- In Table 5 on page 24, changed name, default, R/W and description of register 0xA9 from "", "XX", "–", and "Histogram-based AEC/AGC Control" to "HAECC6", "C1", "RW", and "Histogram-based AEC/AGC Control 6", respectively
- In Table 5 on page 25, changed name, default, R/W and description of register 0xAA to:

HAECC7 14 RW Bit[7]: AEC algorithm selection

0: Average-based AEC algorithm

1: Histogram-based AEC algorithm

Bit[6:0]: Reserved

- In Table 5 on page 25, changed name, default, R/W and description of register 0xAB from "", "XX", "–", and "Histogram-based AEC/AGC Control" to "BD60MAX", "0F", "RW", and "60Hz Banding Step Limit", respectively
- In Table 5 on page 25, changed description of register bits STR-OPT[1:0] (0xAC) from:

Bit[1:0]: Mode select

00: Xenon 01: LED 1&2 1x: LED 3

to:

Bit[1:0]: Mode select

00: Xenon 01: LED 1 1x: LED 2

- In Table 5 on page 25, changed description for register THL_ST (0xB3) from "Digital BLC Target" to "ABLC Target"
- In Table 5 on page 25, changed default value for register THL_DLT (0xB5) from "??" to "04"
- In Table 5 on page 25, changed description for register THL_DLT (0xB5) from "Digital BLC Stable Range" to "ABLC Stable Range"
- In Table 5 on page 25, changed description for register AD-CHB (0xBE) from:

Bit[7]: Reserved Bit[6]: Sign bit

Bit[5:0]: ADC offset value

to:

Blue Channel Black Level Compensation

Bit[7]: Reserved Bit[6]: Sign bit

Bit[5:0]: Blue channel black level compensation

• In Table 5 on page 25, changed description for register AD-CHR (0xBF) from:

Bit[7]: Reserved Bit[6]: Sign bit

Bit[5:0]: ADC offset value

to

Red Channel Black Level Compensation

Bit[7]: Reserved Bit[6]: Sign bit

Bit[5:0]: Red channel black level compensation

• In Table 5 on page 26, changed description for register AD-CHGb (0xC0) from:

Bit[7]: Reserved Bit[6]: Sign bit

Bit[5:0]: ADC offset value

to:

Gb Channel Black Level Compensation

Bit[7]: Reserved Bit[6]: Sign bit

Bit[5:0]: Gb channel black level compensation

• In Table 5 on page 26, changed description for register AD-CHGr (0xC1) from:

Bit[7]: Reserved Bit[6]: Sign bit

Bit[5:0]: ADC offset value

to:

Gr Channel Black Level Compensation

Bit[7]: Reserved Bit[6]: Sign bit

Bit[5:0]: Gr channel black level compensation

• In Table 2 on page 5, deleted row for ESD Rating, Human Body model specification

Document Title: OV7670 Datasheet **Version:** 1.4

DESCRIPTION OF CHANGES

The following changes were made to version 1.3:

• In Table 5 on page 17, changed description of register TSLB[3] (0x3A) from:

"Output sequence (use with register COM13[1] (0x3D))

TSLB[3], COM13[1]):"

to:

"Output sequence (use with register COM13[0] (0x3D))

TSLB[3], COM13[0]:"

• In Table 5 on page 18, changed description of register COM13[0] (0x3D) from:

"UV swap (use with register TSLB[3] (0x3A))

TSLB[3], COM13[1]:"

to:

"UV swap (use with register TSLB[3] (0x3A))

TSLB[3], COM13[0]:"

• In Figure 15 on page 28, added callout for First Pixel Readout (1382.6 μm, 1364.78 μm)