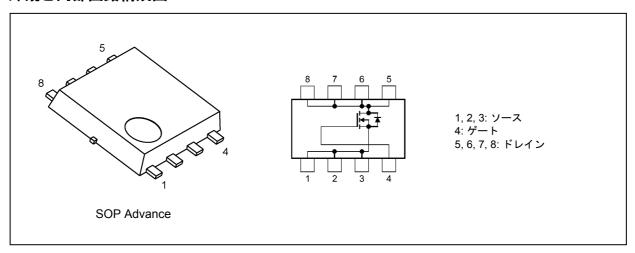
MOSFET シリコンNチャネルMOS形 (U-MOSVII-H)

TPH11006NL


1. 用途

- スイッチングレギュレータ用
- ・ DC-DCコンバータ用
- モータドライブ用

2. 特長

- (1) スイッチングスピードが速い。
- (2) ゲート入力電荷量が小さい。: Q_{SW} = 6.4 nC (標準)
- (3) オン抵抗が低い。: $R_{DS(ON)}$ = 9.6 m Ω (標準) (V_{GS} = 10 V)
- (4) 漏れ電流が低い。: $I_{DSS} = 10 \,\mu\text{A}$ (最大) ($V_{DS} = 60 \,\text{V}$)
- (5) 取り扱いが簡単な、エンハンスメントタイプです。: V_{th} = 1.5 ~ 2.5 V (V_{DS} = 10 V, I_D = 0.2 mA)

3. 外観と内部回路構成図

4. 絶対最大定格 (注) (特に指定のない限り, Ta = 25 ℃)

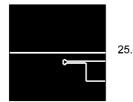
	項目		記号	定格	単位
ドレイン・ソース間電圧			V _{DSS}	60	V
ゲート・ソース間電圧			V _{GSS}	±20	
ドレイン電流 (DC)	(シリコン制限)	(注1), (注2)	I _D	40	Α
ドレイン電流 (DC)	(T _c = 25 °C)	(注1)	I _D	17	
ドレイン電流 (パルス)	(t = 1 ms)	(注1)	I _{DP}	81	
許容損失	(T _c = 25 °C)		P _D	34	W
許容損失	(t = 10 s)	(注3)	P _D	2.8	
許容損失	(t = 10 s)	(注4)	P _D	1.6	
アバランシェエネルギー (単発)		(注5)	E _{AS}	33	mJ
アバランシェ電流			I _{AR}	17	Α
チャネル温度			T _{ch}	150	°C
保存温度			T _{stg}	-55 ~ 150	

注: 本製品の使用条件 (使用温度/電流/電圧等) が絶対最大定格以内での使用においても, 高負荷 (高温および大電流/高電圧印加, 多大な温度変化等) で連続して使用される場合は, 信頼性が著しく低下するおそれがあります。 弊社半導体信頼性ハンドブック (取り扱い上のご注意とお願いおよびディレーティングの考え方と方法) および個別信頼性情報 (信頼性試験レポート, 推定故障率等) をご確認の上, 適切な信頼性設計をお願いします。

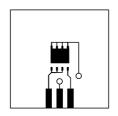
5. 熱抵抗特性

	項目		記号	最大	単位
チャネル・ケース間熱抵抗	(T _c = 25 °C)		R _{th(ch-c)}	3.67	°C/W
チャネル・外気間熱抵抗	(t = 10 s)	(注3)	R _{th(ch-a)}	44.6	
チャネル・外気間熱抵抗	(t = 10 s)	(注4)	R _{th(ch-a)}	78.1	

注1: チャネル温度が150 ℃を超えることのない放熱条件でご使用ください。


注2: 電流定格はシリコンチップの能力によって制限されます。

注3: ガラスエポキシ基板 実装例a (図5.1) 使用時


注4: ガラスエポキシ基板 実装例b (図5.2) 使用時

注5: アバランシェエネルギー (単発) 印加条件

 V_{DD} = 48 V, T_{ch} = 25 °C (初期), L = 89 μH, I_{AR} = 17 A

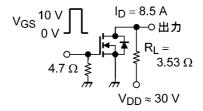
FR-4 25.4 × 25.4 × 0.8 (単位: mm)

FR-4 25.4×25.4×0.8 (単位: mm)

図 5.1 ガラスエポキシ基板 実装例a

図 5.2 ガラスエポキシ基板 実装例b

注意:この製品はMOS構造です。取り扱いの際には静電気にご注意ください。


6. 電気的特性

6.1. 静的特性 (特に指定のない限り, Ta = 25 ℃)

項目	記号	測定条件	最小	標準	最大	単位
ゲート漏れ電流	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±0.1	μА
ドレインしゃ断電流	I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V	_	_	10	
ドレイン・ソース間降伏電圧	V _{(BR)DSS}	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	60	_		V
	V _{(BR)DSX}	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	45	_	_	
ゲートしきい値電圧	V_{th}	V_{DS} = 10 V, I_{D} = 0.2 mA	1.5	_	2.5	
ドレイン・ソース間オン抵抗	R _{DS(ON)}	$V_{GS} = 4.5 \text{ V}, I_D = 8.5 \text{ A}$	_	12.8	17	mΩ
		$V_{GS} = 10 \text{ V}, I_D = 8.5 \text{ A}$	_	9.6	11.4	

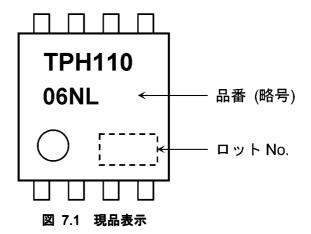
6.2. 動的特性 (特に指定のない限り, Ta = 25 ℃)

項目	記号	測定条件	最小	標準	最大	単位
入力容量	C _{iss}	V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz	_	1500	2000	pF
帰還容量	C _{rss}		_	23	50	
出力容量	C _{oss}		_	350		
ゲート抵抗	r _g	_	_	0.6	1.1	Ω
スイッチング時間 (上昇時間)	t _r	図6.2.1参照	_	4.0	_	ns
スイッチング時間 (ターンオン時間)	t _{on}		_	11.0		
スイッチング時間 (下降時間)	t _f		_	7.1	_	
スイッチング時間 (ターンオフ時間)	t _{off}		_	27	_	

Duty \leq 1%, $t_W = 10 \ \mu s$

図 6.2.1 スイッチング時間の測定回路例

6.3. ゲート電荷量特性 (特に指定のない限り, Ta = 25 °C)


項目	記号	測定条件	最小	標準	最大	単位
ゲート入力電荷量	Qg	$V_{DD} \approx 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 17 \text{ A}$	1	23	_	nC
		$V_{DD} \approx 30 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 17 \text{ A}$		11.2		
ゲート・ソース間電荷量1	Q _{gs1}	$V_{DD} \approx 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 17 \text{ A}$		5.0	_	
ゲート・ドレイン間電荷量	Q_{gd}		_	4.1	_	
ゲートスイッチ電荷量	Q _{SW}		_	6.4	_	

6.4. ソース・ドレイン間の特性 (特に指定のない限り, Ta = 25 °C)

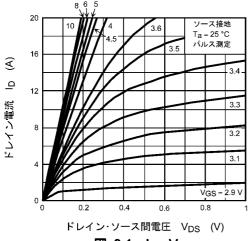
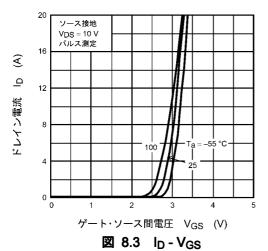
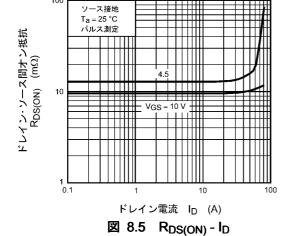
項目	記号	測定条件	最小	標準	最大	単位
ドレイン逆電流 (パルス) (注	E6) I _{DRP}	_	_	_	81	Α
順方向電圧 (ダイオード)	V _{DSF}	I _{DR} = 17 A, V _{GS} = 0 V	-	_	-1.2	V

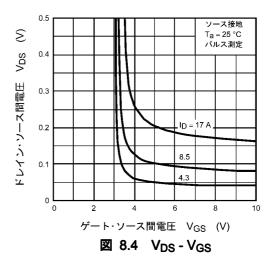
注6: チャネル温度が150 ℃を超えることのない放熱条件でご使用ください。

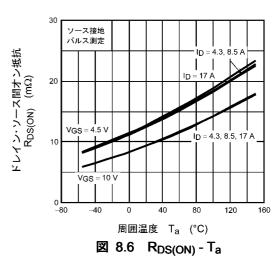
7. 現品表示

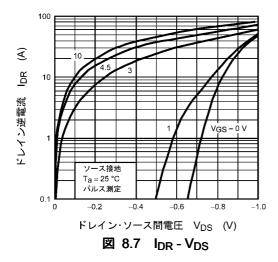
Rev.1.0

8. 特性図 (注)


図 8.1 I_D - V_{DS}





100

50 T_a = 25 °C パルス測定 $\overline{\mathfrak{C}}$ ڡ 30 ドフムソ鴨润 20 0.8 ドレイン·ソース間電圧 V_{DS} (V) 図 8.2 I_D - V_{DS}

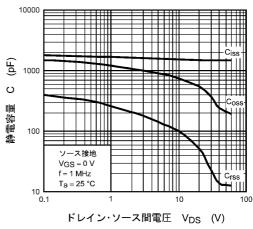
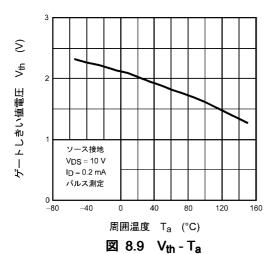
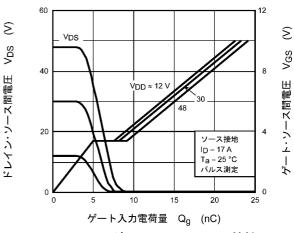
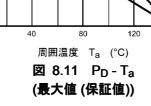
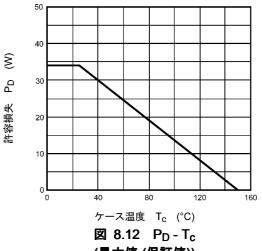



図 8.8 静電容量 - V_{DS}

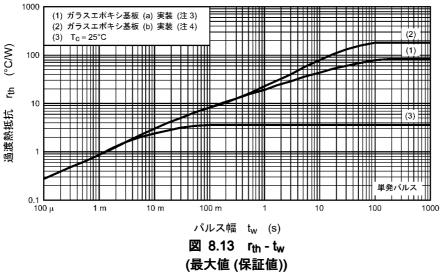
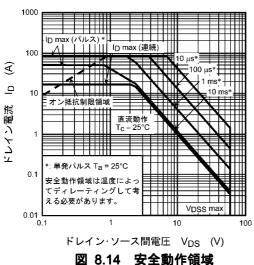
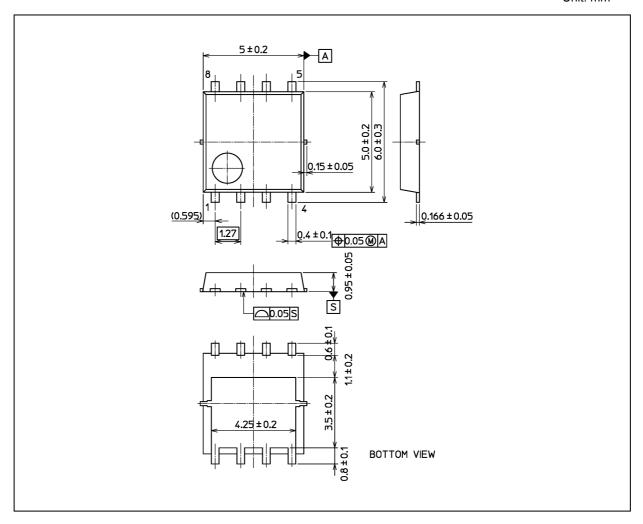


図 8.10 ダイナミック入出力特性

(最大値 (保証値))




図 8.14 安全動作領域 (最大値 (保証値))

注: 特性図の値は,特に指定のない限り保証値ではなく参考値です。

外形寸法図

Unit: mm

質量: 0.069 g (typ.)

	パッケージ名称
東芝名称: 2-5Q1S	
通称名: SOP Advance	