NE612

Double-Balanced Mixer and Oscillator

Product Specification

DESCRIPTION

The NE612 is a low-power VHF monolithic double-balanced mixer with onboard oscillator and voltage regulator. It is intended for low cost, low power communication systems with signal frequencies to 500 MHz and local oscillator frequencies as high as 200 MHz . The mixer is a 'Gilbert cell' multiplier configuration which provides gain of 14 dB or more at 49 MHz .

The oscillator can be configured for a crystal, a tuned tank operation, or as a buffer for an external L.O. Noise figure at 49 MHz is typically below 6 dB and makes the device well suited for high performance cordless telephone. The low power consumption makes the NE612 excellent for battery operated equipment. Networking and other communications products can benefit from very low radiated energy levels within systems. The NE612 is available in an 8 -lead dual in-line plastic package and an 8 -lead SO (surface mounted miniature package).

FEATURES

- Low current consumption
- Low cost
- Operation to 500 MHz
- Low radiated energy
- Low external parts count; suitable for crystal/ceramic filter
- Excellent sensitivity, gain, and noise figure

APPLICATIONS

- Cordless telephone

PIN CONFIGURATION

- VHF transceivers
- RF data links
- Sonabuoys
- Communications receivers
- Broadband LANs
- HF and VHF frequency conversion

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8 -Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE612N
8 -Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE612D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Maximum operating voltage	9	V
$T_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$T_{\text {A }}$	Operating ambient temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

AC/DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, Figure 1

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ	Max	
V_{CC}	Power supply voltage range		4.5		8.0	V
	DC current drain			2.4	3.0	mA
f_{IN}	Input signal frequency			500		MHz
fosc	Oscillator frequency			200		MHz
	Noise figured at 49 MHz			5.0		dB
	Third-order intercept point at 49 MHz	$R F_{I N}=-45 \mathrm{dBm}$		-15		dBm
	Conversion gain at 49 MHz		14	18		dB
$\mathrm{R}_{\text {IN }}$	RF input resistance		1.5			$\mathrm{k} \Omega$
$\mathrm{CIN}_{\text {IN }}$	RF input capacitance			3		pF
	Mixer output resistance	(Pin 4 or 5)		1.5		$k \Omega$

DESCRIPTION OF OPERATION
The NE612 is a Gilbert cell, an oscillator/ buffer, and a temperature compensated bias network as shown in the equivalent circuit. The Gilbert cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell. The differential input stage provides gain and determines the noise figure and signal handling performance of the system.
The NE612 is designed for optimum low power performance. When used with the NE614 as a 49 MHz cordless telephone system, the NE612 is capable of receiving -119 dBm signals with a $12 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio. Third-order intercept is typically -15 dBm (that's approximately +5 dBm output intercept because of the RF gain). The system designer must be cognizant of this large signal limitation. When designing LANs or other closed systems where transmission levels are high, and small-signal or signal-to-noise issues not critical, the input to the NE612 should be appropriately scaled.

Besides excelient low power performance well into VHF, the NE612 is designed to be flexible. The input, output, and oscillator ports can support a variety of configurations provided the designer understands certain constraints, which will be explained here.

The RF inputs (Pins 1 and 2) are biased internally. They are symmetrical. The equivalent AC input impedance is approximately $1.5 \mathrm{k} \mathrm{|\mid} 3 \mathrm{pF}$ through 50 MHz . Pins 1 and 2 can be used interchangeably, but they should not be DC biased externally. Figure 3 shows three typical input configurations.

The mixer outputs (Pins 4 and 5) are also internally biased. Each output is connected to the internal positive supply by a $1.5 \mathrm{k} \Omega$ resistor. This permits direct output termination yet allows for balanced output as well. Figure 4 shows three single-ended output configurations and a balanced output.
The oscillator is capable of sustaining oscillation beyond 200 MHz in crystal or tuned tank configurations. The upper limit of operation is determined by tank " Q " and required drive levels. The higher the Q of the tank or the smaller the required drive, the higher the

Figure 2. Equivalent Circuit

permissible oscillation frequency. If the required L.O. is beyond oscillation limits, or the system calls for an external L.O., the external signal can be injected at Pin 6 through a DC blocking capacitor. External L.O. should be 200 mV P-P minimum to $300 \mathrm{mV} \mathrm{P}_{\text {P-P }}$ maximum.

Figure 5 shows several proven oscillator circuits. Figure 5a is appropriate for cordless telephones. In this circuit a third overtone parallel-mode crystal with approximately 5 pF load capacitance should be specified. Capacitor C3 and inductor L1 act as a fundamental trap. In fundamental mode oscillation the trap is omitted.

Figure 6 shows a Colpitts varacter tuned tank oscillator suitable for synthesizer-controlled applications. It is important to buffer the output of this circuit to assure that switching spikes from the first counter or prescaler do not end up in the oscillator spectrum. The dual-gate MOSFET provides optimum isolation with low current. The FET offers good isolation, simplicity, and low current, while the bipolar circuits provide the simple solution for non-critical applications. The resistive divider in the emitter-follower circuit should be chosen to provide the minimum input signal which will assume correct system operation.

Figure 3. Input Configuration

Figure 4. Output Configuration

a. Colpitts Crystal Oscillator (Overtone Mode)

b. Colpitts L/C Tank Oscillator

c. Hartley L/C Tank Oscillator

Figure 5. Oscillator Circuits

Figure 6. Colpitts Oscillator Suitable for Synthesizer Applications and Typical Buffers

TEST CONFIGURATION

Figure 7. Typical Application for $46 / 49 \mathrm{MHz}$ Cordless Telephone

Double-Balanced Mixer and Oscillator

Figure 8. NE612 Third-Order Intermod and 1dB Compression Point Performance

Figure 11

Figure 9. Input Third-Order Intercept Point vs $V_{\mathbf{C C}}$

Figure 10. Third-Order Intercept Point vs Temperature

