

2回路入り低飽和電圧オペアンプ

概要

NJM2115 は低電圧動作 (±1.0V MIN)、および低飽和出力電圧 (±2.5V 電源で±2.0V_{P-P}) を特徴とする汎用オペアンプです。

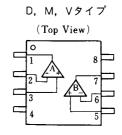
5V 単一電源での動作、および十分な出力電圧を必要とするポータブルCD、ラジカセCD、ポータブルDAT等のディジタルオーディオ機器に最適です。また NJM2115 は NJM2100 のバイアス回路を改良しているため、低電圧時 (<±2.5V)において NJM2100 よりさらに低飽和な特性が得られます。

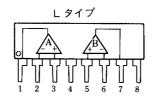
さらに $V^+/V^- > 2.5 V$ において **NJM2100** より発振に対する安定性が向上しています。

特徴

動作電源電圧 (±1~±7V)

低飽和出力電圧

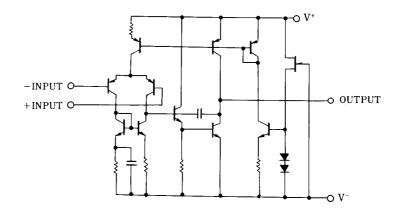

スルーレート (4V/µs typ.)


利得帯域積 (12MHz typ.)

バイポーラ構造

外形 DIP8, DMP8, SIP8, SSOP8

端子配列



1 . A OUTPUT
2 . A -INPUT
3 . A +INPUT
4 . V5 . B +INPUT

6. B -INPUT 7. B OUTPUT

等価回路図 (下図の回路が2回路入っています)

NJM2115D

NJM2115M

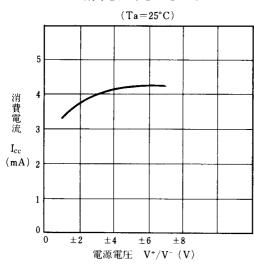
NJM2115V

NJM2115L

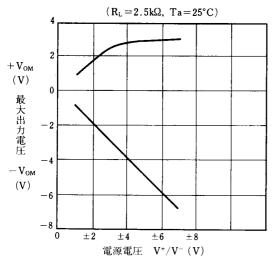
絶対最大定格 (Ta=25°C)

項目				記号	定格	単 位
電	源 電 圧		圧	V+/V-	±7.0	V
電 差	動入	力 電	圧	V_{ID}	± 14	V
消	費	電	力	P_{D}	(Dタイプ) 500 (Mタイプ) 300 (Vタイプ) 250 (Lタイプ) 800	mW
動	作	温	度	T_{opr}	-40 ~ +85	°C
保	存	温	度	T_{stg}	-40 ~ +125	°C

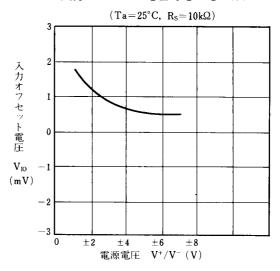
電気的特性 (V⁺/V⁻=±2.5V,Ta=25°C)

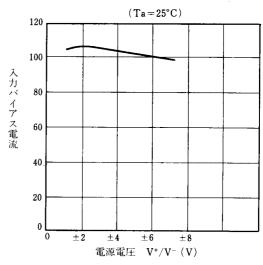

項目	記号	条 件	最 小	標準	最 大	単 位
入力オフセット電圧	V _{IO}	R_S 10k Ω	-	1	6	mV
入力バイアス電流	I _B		-	100	300	nA
電 圧 利 得	A_{V}	R _L ≥10kΩ	60	80	-	dB
最大出力電圧	V_{OM}	R _L ≥2.5kΩ	±2	±2.2	-	V
同相入力電圧範囲	V_{ICM}		±1.5	-	-	V
同相信号除去比	CMR		60	74	-	dB
電源電圧除去比	SVR		60	80	-	dB
消 費 電 流	I_{∞}	V _{IN} =0,R _L =∞	-	3.5	5	mΑ
ス ル ー レ ー ト	SR	A _V =1,V _{IN} =±1V	-	4	-	V/µs
利 得 帯 域 幅 積	GB	f=10kHz	-	12	-	MHz

⁽注1) 使用回路の利得は、3dB~30dB までが実用的です。

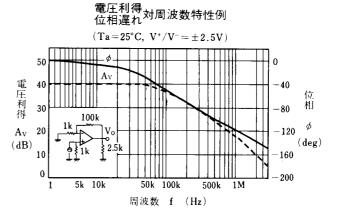

⁽注2) ボルテージフォロワーで使用する場合には、同相入力電圧範囲と容量性負荷に因る発振に注意して下され。

特性例

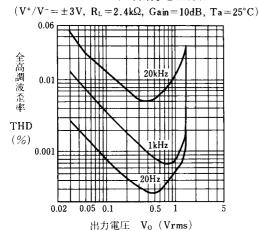

消費電流対電源電圧持性例

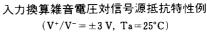

最大出力電圧対電源電圧特性例

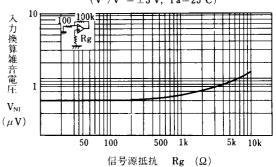
入力オフセット電圧対電源電圧特性例

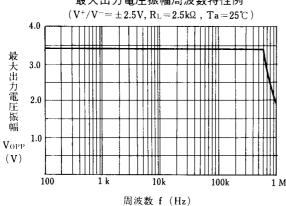


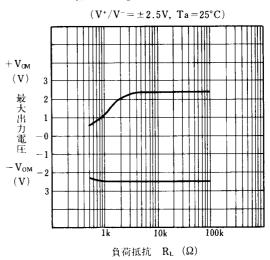
入力バイアス電流対電源電圧特性例



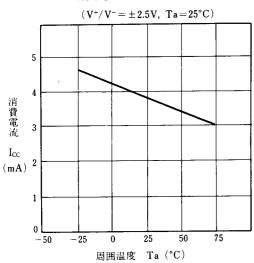

特性例


電圧利得対周波数特性例 $(V^+/V^- = \pm 2.5 V, Ta = 25^{\circ}C)$ 120 100 電圧利得 80 60 $\begin{array}{c} A_V \\ (dB) \end{array}$ 40 20 0 100 100k 1 k 10k 1M 周波数 f (Hz)

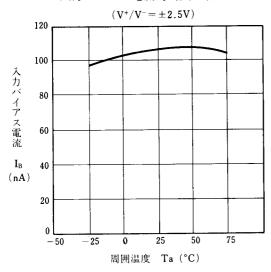

全高調波歪率対出力電圧特性例



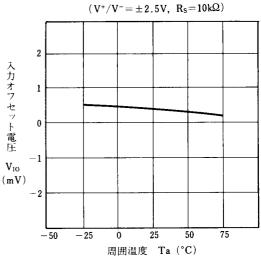
最大出力電圧振幅周波数特性例

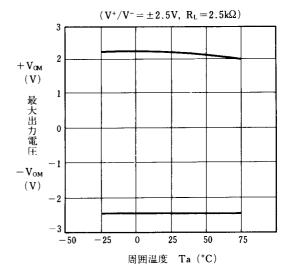


最大出力電圧対負荷抵抗特性例



特性例


消費電流対周囲温度特性例


入力バイアス電流対周囲温度特性例

入力オフセット電圧対周囲温度特性例

最大出力電圧対周囲温度特性例

<注意事項>

このデータブックの掲載が容の正確さには 万全を期しておりますが、掲載内容について 何らかの活がな保証を行うものではありません。とくに応用回路については、製品の代表 的な応用例を説明するためのものです。また、 工業所有権その他の権利の実施権の許諾を伴 うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。