フルブリッジDCモータコントロールキット

はじめに

この度は、フルブリッジDCモータコントロールキットをご購入いただきありがとうございます。本キットは、可変抵抗器(電圧入力)によって、DCモータの正反転および回転数をコントロールします(リスト1)。また、プログラムを変更すれば、RCサーボ信号によりモータをコントロールするサーボアンプとしてもご使用いただけます(リスト2)。

本マニュアルに沿って、注意深く組み立ててください (モータ別売)。

組立

表1に使用部品を示します。不足品のない事をお確かめください。 キットの製造時期によっては、完成写真と異なる部品が使用されてい る場合があります。図1に基板を示します。シルク印刷面が、部品取 付面となります。

部品は、背の低い順に実装します。 I C 2 、3 は実装済みですので、 抵抗から取付けてください。

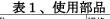
- 抵抗R1~R6
- 積層セラミックコンデンサ C7、C8
- 積層セラミックコンデンサ C2~C6
- ICソケット
- ジャンパ | P1、ピンヘッダ X 1
- LED1、電解コンデンサ C1
- ・ 三端子レギュレータ IC1、MOSFET Q1 \sim Q4の順に実装します。

ご購入時のプログラムのままで、可変抵抗器を使用してスピード及び 正反転コントロールをするときは、部品面のジャンパJP2をハンダ接 続します。

接続

表2に接続一覧を、図2に接続を示します。 V_Mはモータ電源、GNDはグランドです。

JP1にジャンパピンをセットすれば、PICへの電源(三端子レギュレータ入力)もV_Mより供給されます。 PIC(制御回路)電源をモータ電源と分離する場合には、 JP1のジャンパピンを外して、VCCより電源供給します。 (モータの定格電圧が7Vより低い場合も、JP1のジャンパピンを外して、モータ電源には7V以下のモータ定格電圧、 VCCには7V~24Vの電圧の電源を接続してください)


M+、M-はDCモータへの出力端子です。DCモータの 端子からのリード線をこちらに接続してください。

X1は信号入力です。可変抵抗器を使用する場合はJP2 をハンダ接続します。+、-を可変抵抗器の端子の両端に、 Sigを可変抵抗器の中央の摺動子に接続します。

モータ電流が連続して3A以上流れる場合には、図3に示すように、各MOSFETのソース(S)とドレイン(D)へのラインのレジスト(緑色の塗料)を細ドライバなどで除去し、銅線などをハンダ付けして電流的に補強してください。

図2. 基板接続

部品番号	名称	規格
JP1	2 P ピンヘッダ	
	ジャンパピン	
X 1	3 P ピンヘッダ	
C 1	電解コンデンサ 50V	35ZLH100M6.
	1 μ F	3 X 1 1
C2、3、	積層セラミックコンデン	RD15F105Z1H
4、5	サ 50V1μF	L2L-500
C6、7、	積層セラミックコンデン	RPEF11H104Z
8	サ 50V0. 1μF	2 P 1 A 0 1 B
R1、2、	炭素被膜抵抗	1/6W 100Ω
3、4		
R 5	炭素被膜抵抗	1/6W 1kΩ
R 6	炭素被膜抵抗	1/6W 10kΩ
LED1	5 mm赤色 L E D	OSDR5113A
Q1、2、	MOSFET	TK6R7A10PL
3、4		
IC1	三端子レギュレータ	L7805CV
IC2、3	ゲートドライバIC	MCP14700
IC4	マイクロコントローラ	PIC16F1938
	28P 丸ピンICソ	
	ケット	
	可変抵抗器	10kΩB型VR
	可変抵抗器	10kΩB型VR

図1. プリント基板

(a)部品面(シルク面)

(b)ハンダ面

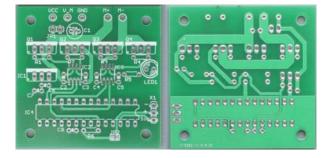
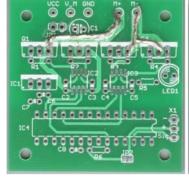
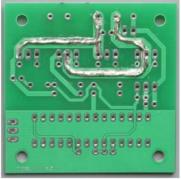




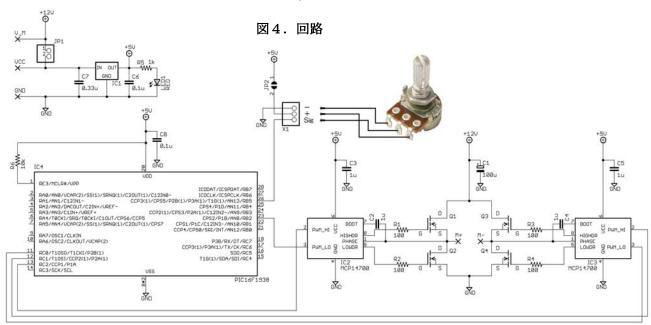
表2. 端子接続

端子名		接続
VCC		PIC電源(三端子レギュレータ入力)
V_M		モータ電源
GND		グランド
M+		DCモータ出力(+)
M-		DCモータ出力(一)
	1	信号入力グランド
X 1	+	+5V出力(JP2により接続)
	Sig	電圧入力

図3. パターンの電流的補強

使用方法

PIC電源をモータ電源と分離した場合は、VCC、V_Mの順に電源を投入してください。VCCを投入すると、L ED1が点灯します。ジャンパJP1を接続している場合は、 V_M を投入すると同時にLED1が点灯します。


キットは、PWM制御によりモータ回転数をコントロールします。リスト1にプログラムを示します。可変抵抗が中点 (Sig端子電圧が2.5V) の時にDuty比は0%となりモータは停止します。Sig端子の電圧が2.5Vを超える とモータは正転します。5 Vの時にDuty95%となり、最大回転数で正転します。Sig端子の電圧が2.5 V未満 の時、モータは反転します。 0 Vの時にDuty95%となり、最大回転数で反転します。

このキットは、ラジコンサーボ信号で動作させる事も可能です。プログラムをリスト2に示します。この場合はラジコ ンより電源が供給されますので、JP2のジャンパを接続しないか、JP1のジャンパピンを外して使用します。

什様

電源電圧VCC:7~24V 電源電圧V_M : 2 4 V以下 ● 連続出力電流: 3 A

PWM周波数 : 1 k H z Duty可変範囲:0~95%

コントロールプログラム(電圧入力) リスト 1

#include <xc. h> #include <stdlib.h>

```
_CONFIG( FOSC_INTOSC & WDTE_OFF & PWRTE_OFF & MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_ON & CLKOUTEN_OFF & IESO_OFF & FCMEN_OFF );
__CONFIG( WRT_OFF & VCAPEN_OFF & PLLEN_OFF & STVREN_OFF & BORV_HI & LVP_OFF );
```

#define XTAI, FREQ 8000000 /* 動作周波数: 8MHz */ void initializePort(void): initializePWM(void); void initializeAD(void): void void main (void) ad value, duty; /* AD 変換値, Duty 比 */ /* 初期設定 */ = 0b01110010; /* 内部オシレータ 8MHz PLL OFF */ initializePort(); /* ポート初期設定 */ initializePWM(); /* PWM 初期設定 */ initializeAD(); /* ADC 初期設定 */ while(1){ GO nDONE = 1: /* AD 変換開始*/ /* AD変換完了待ち */ while (GO_nDONE); ad value = ADRESH: /* ad value にAD変換の結果を保存 */

消費電流の例(参考値)

・制御回路のみの消費電流:約10mA

 \cdot RS-385PH-4045 (P-06439) 無負荷最大回転時:9V 0.7A

: 9 V 2. 5 A 無負荷時最大

 \cdot RE-208RA-2865 (P-06438)

無負荷最大回転時: 4.5V 0.3A 無負荷時最大 : 4. 5 V 1. 5 A

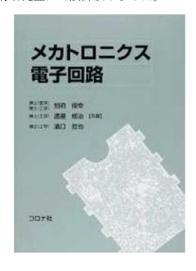
 \cdot FA-130RA-2270 (P-06437)

無負荷最大回転時: 3. 0 V 0. 2 5 A 無負荷時最大 : 3. 0 V 1. 3 A

if((ad value > 123) && (ad value < 133)) { /* 2.4[V] < Vref < 2.6[V] ? */ /* 両レッグをローサイド100%に */ CCPR1L CCPR2L = 0; }else{ = abs((ad_value - 128) * 100 / 128); /* Duty比[%]を計算 */ duty if(duty > 95) { duty = 95; } /* Duty比を95%に制限 */

if(ad_value < 128) { /* 2.5[V} < Vref ? */ CCPR1L /* 左レッグをローサイド100%に */ = PR4 * duty / 100; /* 右レッグを計算した Duty 比でドライブ */

}else{ CCPR11. = PR2 * duty / 100; /*左レッグを計算した Duty 比でドライブ */ }


```
}
}
void
          initializePort(void)
          PORTA = 0x00; LATA = 0x00; ANSELA = 0x00; TRISA = 0x00;
          PORTB = 0x00; LATB = 0x00; ANSELB = 0x00; TRISB = 0x00;
           PORTC = 0x00; LATC = 0x00; TRISC = 0x00;
           PORTE = 0x00; LATE = 0x00; TRISE = 0x00;
void
           initializePWM( void )
           CCPTMRSO
                     = 0b00000100; /* タイマの割り当てを設定 PWM モジュール1:タイマ 2 PWM モジュール2:タイマ 4 */
           /* 左レッグ設定 */
                                                      /* PWM 出力ポートを一旦 OFF */
          TRISC2
                     = 1:
                                TRISB2
                                           = 1:
          PR2
                                = 125;
                                                      /* PWM 周波数: 1kHz */
           CCPR11.
                     = 0:
                                                      /* Dutyを0%に */
           CCP1CON
                     = 0b10011100;
                                                      /* PWMモジュール1をON */
                     = 0b00000110;
                                                      /* タイマ2をON プリスケーラ:16 */
           T2CON
           PWM1CON
                     = 0b00000100;
                                                      /* デッドタイムを設定 2[us]*/
                                TRISB2
                                                      /* PWM 出力ポートを ON */
           TRISC2
                     = 0:
                                           = 0;
           /* 右レッグ設定 */
           CCP2SEL
                     = 0;
                                P2BSEL
                                           = 0;
                                                      /* P2AをRC1に, P2BをRC0に割り当て */
                                                      /* PWM 出力ポートを一旦 OFF */
           TRISC1
                                TRISC0
                                = 125;
                                                      /* PWM.周波数: 1[kHz] */
           CCPR2L
                     = 0;
                                                      /* Dutyを0%に */
           CCP2CON
                     = 0b10011100;
                                                      /* PWMモジュール2をON */
           T4CON
                     = 0b00000110;
                                                      /* タイマ4を0N プリスケーラ:16 */
           PWM2CON
                     = 0b0000100;
                                                      /* デッドタイムを設定 2[us] */
           TRISC1
                     = 0;
                               TRISCO
                                           = 0;
                                                      /* PWM 出力ポートを ON */
}
void
           initializeAD( void )
          TRISB5 = 1; ANSB5 = 1; /* RAOをAD入力ピンに設定 */
                     = 0b01010000;
                                         /* ADCクロックを2[us]に設定 */
           ADCON1
                                           /* ADCモジュールを ON */
           ADCONO
                     = 0b00110101;
           __delay_us( 100 );
                               /* 設定完了時間待ち */
                 コントロールプログラム(サーボパルス入力)
リスト2
#include
           <xc. h>
#include
           <stdlib.h>
 _CONFIG( FOSC_INTOSC & WDTE_OFF & PWRTE_OFF & MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_ON & CLKOUTEN_OFF & IESO_OFF & FCMEN_OFF );
__CONFIG( WRT_OFF & VCAPEN_OFF & PLLEN_OFF & STVREN_OFF & BORV_HI & LVP_OFF );
           _XTAL_FREQ 8000000 /* 動作周波数: 8MHz */
#define
void
          initializePort( void );
           initializePWM( void );
void
           initializePinIntr(void);
void
          initializeCapture(void);
void
void
          main (void)
           /* 初期設定 */
           OSCCON
                    = 0b01110010;
                                           /* 内部オシレータ 8MHz PLL 0FF */
           initializePort();
                                           /* ポート初期設定 */
           initializePWM();
                                           /* PWM 初期設定 */
                                /* ピン変化割り込み初期設定 */
           initializePinIntr();
           initializeCapture();
                                /* キャプチャモジュール初期設定 */
          while(1):
void interrupt func (void)
                                is_cycle_overflowed = 0;
          static unsigned char
           if (IOCIE && IOCIF) {
                                /* 立ち上がり割り込み発生 */
                                                     = 0xFFFF - 50000;
                      /* 立ち下がり割り込みを動作 */
                     CCP3IF
                               = 0;
                     CCP3 IE
                                = 1;
                     /* 立ち上がり割り込みを停止 */
                     TOCRE
                                = 0x00;
                                           IOCIF
                                                      = 0:
                                = 0:
                     TOCIE
          }else if (CCP3IE && CCP3IF) {
                                           /* ウち下がり割り込み発生 */
                     unsigned short
                                           timer_value = 0, duty;
                     /* 割り込み発生時のタイマ値を timer_value に保存 */
                     timer_value = CCPR3H;
                     timer_value <<= 8;
                     timer_value |= CCPR3L;
                     timer_value = timer_value - (0xFFFF - 50000);
```

```
/* 立ち下がり割り込みを停止 */
                      CCP3 IF
                                 = 0:
                      CCP3 TE
                                 = 0:
                      /* 立ち上がり割り込みを動作 */
                      TOCBF
                                 = 0x00:
                      IOCIF
                                 = 0;
                                 = 1;
                      TOCTE
                      if ((timer_value > 2000) && (timer_value < 4000)) {
                                 /* パルス幅が 1ms くT く2ms */
                                 if (is_cycle_overflowed) {
                                                                   /* 超過周期フラグが ON */
                                             is_cycle_overflowed = 0;
                                                        = abs(3000 - timer_value) / 10;
                                             if(duty > 95){duty = 95;} /* Duty比を95%に制限 */
                                             if (timer_value < 3000) {
                                                        /* 正転 */
                                                        CCPR1L
                                                                   = PR2 * duty / 100; /* 右レッグを計算した Duty 比でドライブ */
                                                        CCPR2I.
                                                                   = 0;
                                            }else{
                                                        /* 反転 */
                                                                   = PR4 * duty / 100; /* 右レッグを計算した Duty 比でドライブ */
                                                        CCPR2I.
                                                        CCPR1L
                                                                   = 0;
                                            }
                                 }
           }else if (TMR1IE && TMR1IF) {
                                             /* パルス周期が 25ms 以上 */
                      TMR1IF
                      TMR1
                                 = 0xFFFF - 50000;
                                                        /* 25ms で割り込みが発生する */
                      is_cycle_overflowed = 1; /* 超過周期エラーフラグをセット */
                      /* 立ち上がり割り込みを動作 */
                      TOCBF
                                 = 0x00;
                                            IOCIF
                                                        = 0:
                      IOCIE
                                 = 1:
                      /* 立ち下がり割り込みを停止 */
                      CCP3IE
                                 = 0;
           1
}
           initializePort( void )
void
           PORTA = 0x00; LATA = 0x00; ANSELA = 0x00; TRISA = 0x00;
           PORTB = 0x00; LATB = 0x00; ANSELB = 0x00; TRISB = 0x00;
           PORTC = 0x00; LATC = 0x00; TRISC = 0x00;
           PORTE = 0x00; LATE = 0x00; TRISE = 0x00;
}
void
           initializePWM( void )
           CCPTMRSO
                      = 0b00000100; /* タイマの割り当てを設定 PWM モジュール1:タイマ 2 PWM モジュール2:タイマ 4 */
           /* 左レッグ設定 */
                                                        /* PWM 出力ポートを一旦 OFF */
           TRISC2
                                 TRTSB2
                      = 1;
                                            = 1:
                      = 125;
                                                        /* PWM.周波数: 1kHz */
           PR2
           CCPR1L
                                                        /* Dutyを0%に */
                      = 0;
           CCP1CON
                      = 0b10011100;
                                                        /* PWM モジュール1を ON */
                                                        /* タイマ2を ON プリスケーラ:16 */
           T2CON
                      = 0b00000110;
           PWM1CON
                      = 0b0000100;
                                                        /* デッドタイムを設定 2[us]*/
           TRISC2
                      = 0;
                                 TRISB2
                                             = 0;
                                                        /* PWM 出力ポートを ON */
           /* 右レッグ設定 */
           CCP2SEL
                      = 0;
                                 P2BSEL
                                            = 0;
                                                        /* P2AをRC1に, P2BをRC0に割り当て */
           TRISC1
                      = 1;
                                 TRISCO
                                             = 1;
                                                        /* PWM 出力ポートを一旦 OFF */
                                                        /* PWM.周波数: 1[kHz] */
           PR4
                      = 125;
           CCPR2L
                      = 0:
                                                        /* Dutyを0%に */
           CCP2CON
                      = 0b10011100;
                                                        /* PWMモジュール2をON */
                                                        /* タイマ4を ON プリスケーラ:16 */
           T4CON
                      = 0b00000110;
                                                        /* デッドタイムを設定 2[us] */
           PWM2CON
                      = 0b00000100;
                                                        /* PWM 出力ポートを ON */
                                 TRISCO
           TRISC1
                      = 0;
                                            = 0;
}
           initializePinIntr(void)
void
           TRISB5
                      = 1;
                                 /*RB5 の立ち上がりピン変化割り込みを許可 */
           IOCBP5
                      = 1;
           GIE
                      = 1;
                      = 1;
           IOCIE
           initializeCapture(void)
void
           TRISB5
                      = 1:
           TMR1IE
                      = 1;
           T1CON
                      = 0b00000001;
           CCP3SEL
                      = 1:
                      = 0b0000100;
           CCP3CON
           GIE
                                 PEIE
                      = 1;
                                            = 1;
                      = 1;
           CCP3 IE
}
```

おわりに

Hブリッジドライバについては、メカトロ ニクス電子回路 (コロナ社) (ISBN-13: 978-4339008623) に解説を載せています。ご参照く ださい。

この基板は松江工業高等専門学校電気工学 科別府研究室にて設計致しました。

