# ZETTLER DISPLAYS

XIAMEN ZETTLER ELECTRONICS CO., LTD.

## SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY

|                     | <b>CUSTOMER APP</b> | PROVAL          |                 |
|---------------------|---------------------|-----------------|-----------------|
|                     |                     |                 |                 |
|                     |                     |                 |                 |
|                     |                     |                 |                 |
|                     |                     |                 |                 |
|                     |                     |                 |                 |
|                     |                     |                 |                 |
|                     |                     |                 |                 |
|                     |                     |                 |                 |
|                     |                     |                 |                 |
|                     |                     |                 |                 |
| <b>X PART NO. :</b> | ACM0802C-NLW-BBW-   | IIC (ZETTLER D  | ISPLAYS) VER1.0 |
| APPROVAL            |                     | COMPANY<br>CHOP |                 |
| CUSTOMER            |                     |                 |                 |
| COMMENTS            |                     |                 |                 |

| ZETTLER DI  | ZETTLER DISPLAYS ENGINEERING APPROVAL |             |  |  |  |  |  |  |  |  |
|-------------|---------------------------------------|-------------|--|--|--|--|--|--|--|--|
| DESIGNED BY | CHECKED BY                            | APPROVED BY |  |  |  |  |  |  |  |  |
| WJQ         | LJF                                   | GZH         |  |  |  |  |  |  |  |  |

#### **REVISION RECORD**

| REVISION REVISION | REVISION DATE | PAGE   | CONTENTS    |
|-------------------|---------------|--------|-------------|
| VER1.0            | 2017-11-28    |        | FIRST ISSUE |
|                   |               |        |             |
|                   |               |        |             |
|                   |               |        |             |
|                   |               | i<br>J |             |
|                   |               | İ      |             |
|                   |               |        |             |
|                   |               | İ      |             |
|                   |               | i<br>I |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | i<br>I |             |
|                   |               | İ      |             |
|                   |               | İ      |             |
|                   |               | i<br>J |             |
|                   |               | İ      |             |
|                   |               | i<br>J |             |
|                   |               | i<br>I |             |
|                   |               |        |             |

#### **\*** CONTENTS

- 1.0 GENERAL SPECS
- 2.0 ABSOLUTE MAXIMUM RATINGS
- 3.0 ELECTRICAL CHARACTERISTICS
- 4.0 OPTICAL CHARACTERISTICS
- 5.0 BLOCK DIAGRAM
- 6.0 PIN ASSIGNMENT
- 7.0 POWER SUPPLY
- 8.0 TIMING CHARACTERISTICS
- 9.0 MECHANICAL DIAGRAM
- 10.0 RELIABILITY TEST
- 11.0 DISPLAY INSTRUCTION TABLE
- 12.0 STANDARD CHARACTER PATTERNS
- 13.0 PRECAUTION FOR USING LCM

## 1.0 GENERAL SPECS

| 1. Display Format         | 8*2 Character                                          |
|---------------------------|--------------------------------------------------------|
| 2. Power Supply           | 5.0V(Single power supply without DC-DC,adjustable Vop) |
| 3. Overall Module Size    | 58.0mm(W) x 32.0mm(H) x max 13.5mm(D)                  |
| 4. Viewing Aera(W*H)      | 38.0mm(W) x 16.0mm(H)                                  |
| 5. Dot Size (W*H)         | 0.56mm(W) x 0.66mm(H)                                  |
| 6. Dot Pitch (W*H)        | 0.60mm(W) x 0.70mm(H)                                  |
| 7. Character Size (W*H)   | 2.96mm(W) x 5.56mm(H)                                  |
| 8. Character Pitch (W*H)  | 3.55mm(W) x 5.94mm(H)                                  |
| 9. Viewing Direction      | 6:00 O'Clock                                           |
| 10. Driving Method        | 1/16Duty,1/5Bias                                       |
| 11. Controller IC         | RW1063-0A or compatible                                |
| 12. Display Mode          | STN /BLUE/ Negative/ Transmissive                      |
| 13. Backlight Options     | White LED/Side                                         |
| 14. Operating temperature | -20°C ~ 70°C                                           |
| 15. Storage temperature   | -30°C ~ 80°C                                           |
| 16. RoHS                  | RoHS compliant                                         |

## 2.0 ABSOLUTE MAXIMUM RATINGS

| Item                         | Symbol   | Min     | Тур | Max     | Unit |
|------------------------------|----------|---------|-----|---------|------|
| Operating temperature        | Тор      | -20     |     | 70      | °C   |
| Storage temperature          | Tst      | -30     |     | 80      | °C   |
| Input voltage                | Vin      | Vss-0.3 |     | Vdd+0.3 | V    |
| Supply voltage for logic     | Vdd- Vss | 2.7     |     | 5.5     | V    |
| Supply voltage for LCD drive | Vdd- V0  | 3.0     |     | 8.0     | V    |

#### 3.0 ELECTRICAL CHARACTERISTICS

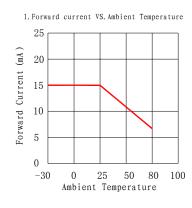
## 3.1 Electrical Characteristics Of LCM

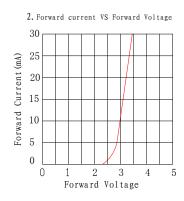
| Item                 | Symbol  | Condition               | Min  | Тур | Max | Unit |
|----------------------|---------|-------------------------|------|-----|-----|------|
| Power Supply Voltage | Vdd     | 25°C                    |      | 5.0 |     | V    |
| Power Supply Current | Idd     | Vdd=5.0V, fosc=270kHz   |      | 1.5 | 2.0 | mA   |
| Input voltage (high) | Vih     | Pins:(E,RS,R/W,DB0-DB7) | 2.5  |     | Vdd | V    |
| Input voltage (low)  | Vil     | VDD=5V                  | -0.3 |     | 0.6 | V    |
|                      |         | -20°C                   |      |     | 5.0 |      |
| Recommended LC       |         | 25°C                    | 4.3  | 4.5 | 4.7 | V    |
| Driving Voltage      | Vdd –V0 | 70°C                    | 4.0  |     |     |      |

### 3.2 The Characteristics Of LED Backlight

## 3.2.1 Electrical-Optical Characteristics Of LED Backlight (Ta=25°C)

| Item                           | Symbol | Condition      | Min  | Тур | Max  | Unit  |
|--------------------------------|--------|----------------|------|-----|------|-------|
| Forward Voltage <sup>(1)</sup> | Vf     | lf=15mA        | 2.9  | 3.1 | 3.3  | V     |
| Reverse Voltage                | Vr     | -              |      |     | 5    | V     |
| Luminance <sup>(2)</sup>       | Lv     | lf=15mA        | 260  | 300 | 450  | cd/m² |
| Uniformity <sup>(3)</sup>      | Δ      | (Lvmin/Lvmax)% | 70%  |     |      |       |
| Peak wave length               | λр     | -              |      |     |      | nm    |
| Chroma coordinate              | х      | If=15mA        | 0.26 |     | 0.30 | um    |
| Chiloma coordinate             | у      | lf=15mA        | 0.27 |     | 0.31 | um    |

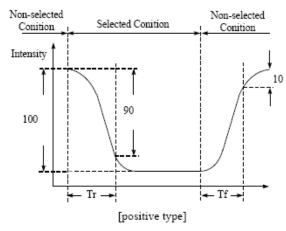

#### NOTE:


- (1) Forward voltage means voltage applied directly to the LED
- (2)The luminance is the average value of 5 points, The measurement instrument is BM-7 luminance colorimeter. The diameter of aperture is  $\Phi$ 5mm
  - (3) Luminance means the backlight brightness without LCD.
- (4) Backlight lifetime means luminance value larger than half of the original after 20000 hours' continuous working.

## 3.2.2 Backlight Control Circuit For LCM (1x1=1 pcs LED)



#### 3.2.3 LED Characteristics Curves (for single led)





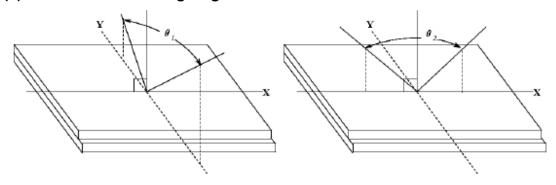


## 4.0 OPTICAL CHARACTERISTICS (Ta=25°C)

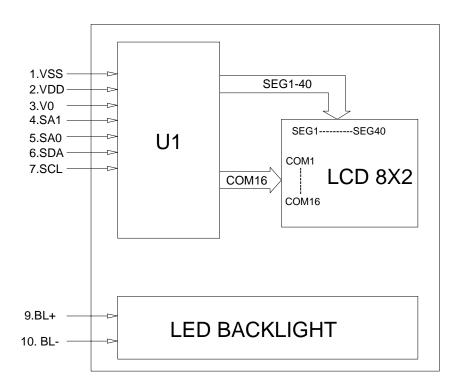

| Item                         | Symbol | Condition    | Min | Тур | Max | Unit |  |
|------------------------------|--------|--------------|-----|-----|-----|------|--|
| Viewing angle (Left - right) | θ2     | Cr ≥ 2.0     | -35 | -   | 35  | deg  |  |
| Viewing angle (Up-down)      | θ1     | Cr ≥ 2.0     | -25 | -   | 40  | deg  |  |
| Contrast Ratio               | Cr     | θ1=0°, θ2=0° | -   | 6   | -   |      |  |
| Response time (rise)         | Tr     | θ1=0°, θ2=0° | -   | 180 | 300 | ms   |  |
| Response time (fall)         | Tf     | θ1=0°, θ2=0° | -   | 150 | 250 | ms   |  |

## (1). Definition of Optical Response Time





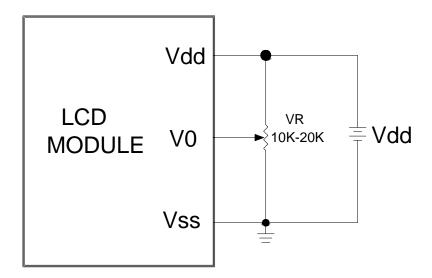

## (2). Definition of Contrast Ratio




Cr= Brightness of Non-selected Segment(B2)
Brightness of selected Segment(B1)

## (3). Definition of Viewing Angle $\theta$ 2 and $\theta$ 1

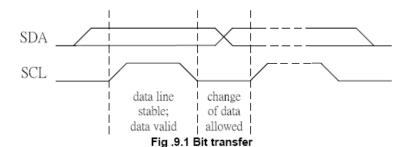



## **5.0 BLOCK DIAGRAM**



## **6.0 PIN ASSIGNMENT**

| Pin No. | Symbol | Function                   |
|---------|--------|----------------------------|
| 1       | Vss    | Ground                     |
| 2       | Vdd    | +5.0V                      |
| 3       | V0     | LCD contrast adjust        |
| 4       | SA1    | Slave address              |
| 5       | SA0    |                            |
| 6       | SDA    | Serial input data          |
| 7       | SCL    | Serial clock input         |
| 8       | NC     |                            |
| 9       | BL+    | Power Supply for BL+(5.0V) |
| 10      | BL-    | Power Supply for BL-(0V)   |


## 7.0 POWER SUPPLY



#### 8.0 TIMING CHARACTERISTICS

#### > BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.9.1



#### START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.9.2

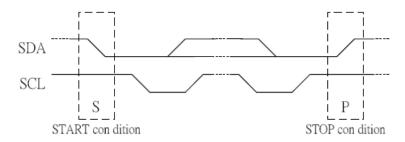
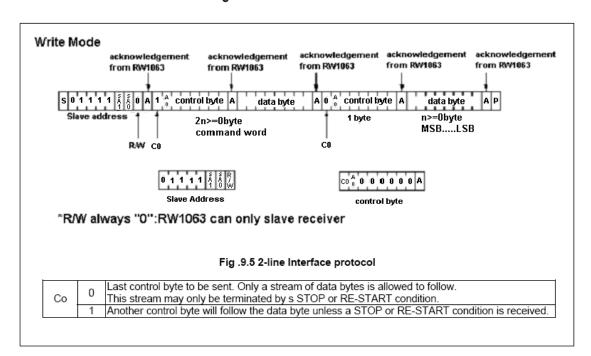
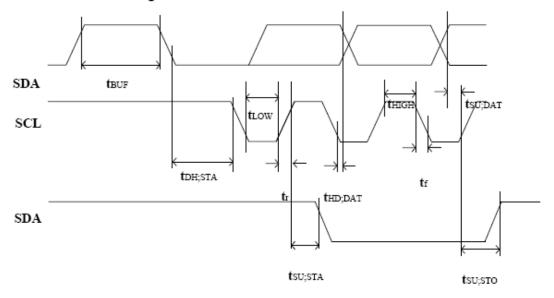
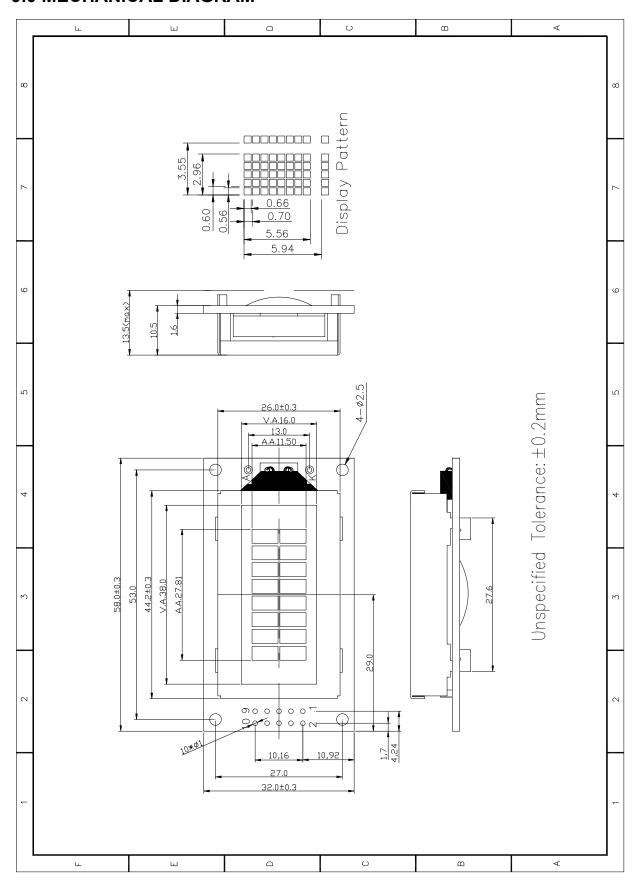





Fig .9.2 Definition of START and STOP conditions




## ♦ IIC interface timing



|                                                     |        |                     |           |                      |          |                      | (Ta = 2 | .5°C) |  |
|-----------------------------------------------------|--------|---------------------|-----------|----------------------|----------|----------------------|---------|-------|--|
| Item                                                | Signal | Symbol              | Condition | VDD=                 | VDD=2.7V |                      | D=5V    | Units |  |
| rem                                                 | Signar | Symbol              |           | Min.                 | Max.     | Min.                 | Max.    | Units |  |
| SCL clock frequency                                 |        | fsclk               |           | DC                   | 400      | DC                   | 400     | KHz   |  |
| SCL clock low period                                | SCL    | t <sub>LOW</sub>    | ] —       | 1.3                  | _        | 1.3                  | _       |       |  |
| SCL clock high period                               |        | t <sub>HIGH</sub>   |           | 0.6                  | _        | 0.6                  | _       | us    |  |
| Data set-up time                                    | SDA    | t <sub>SU;DAT</sub> |           | 180                  | -        | 80                   | -       | ns    |  |
| Data hold time                                      | אענ    | t <sub>HD:DAT</sub> | ] _       | 0                    | 0.9      | 0                    | 0.9     | us    |  |
| SCL,SDA rise time                                   | SCL,   | t <sub>r</sub>      |           | 20+0.1C <sub>b</sub> | 300      | 20+0.1Сь             | 300     | ns    |  |
| SCL,SDA fall time                                   | SDA    | t <sub>f</sub>      | ] _       | 20+0.1C <sub>b</sub> | 300      | 20+0.1C <sub>b</sub> | 300     |       |  |
| Capacitive load represent by each bus line          |        | Сь                  | _         | -                    | 400      | -                    | 400     | pf    |  |
| Setup time for a repeated START condition           | SDA    | t <sub>SU;STA</sub> | _         | 0.6                  | -        | 0.6                  | -       | us    |  |
| Start condition hold time                           |        | t <sub>HD;STA</sub> | _         | 0.6                  | _        | 0.6                  | -       | us    |  |
| Setup time for STOP condition                       |        | t <sub>SU;STO</sub> | _         | 0.6                  | -        | 0.6                  | -       | us    |  |
| Bus free time between a Stop and<br>START condition | SCL    | t <sub>BUF</sub>    | _         | 1.3                  | -        | 1.3                  | -       | us    |  |

## 9.0 MECHANICAL DIAGRAM



## **10.0 RELIABILITY TEST**

| NO | Te                    | est Item                                     | Description                                                                                                                      | Test Condition                                                                                       | Remark         |
|----|-----------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------|
| 1  |                       | High temperature storage                     | Applying the high storage temperature Under normal humidity for a long time Check normal performance                             | 80 °C<br>96hrs                                                                                       |                |
| 2  |                       | Low temperature storage                      | Applying the low storage temperature Under normal humidity for a long time Check normal performance                              | -30 <b>°</b> C<br>96hrs                                                                              |                |
| 3  |                       | High temperature<br>Operation                | Apply the electric stress(Voltage and current) Under high temperature for a long time                                            | 70 °C<br>96hrs                                                                                       | Note1          |
| 4  | Environmental<br>Test | Low temperature<br>Operation                 | Apply the electric stress Under low temperature for a long time                                                                  | -20 <b>º</b> C<br>96hrs                                                                              | Note1<br>Note2 |
| 5  | Test                  | High<br>temperature/High<br>Humidity Storage | Apply high temperature and high humidity storage for a long time                                                                 | 90% RH<br>40°C<br>96hrs                                                                              | Note2          |
| 6  |                       | Temperature Cycle                            | Apply the low and high temperature cycle -30°C <> 25°C <> 80°C <> 25°C 30min 10min 30min 10min  1 cycle Check normal performance | -30°C/80°C<br>10 cycle                                                                               |                |
| 7  | Mechanical<br>Test    | Vibration<br>test(Package state)             | Applying vibration to product check normal performance                                                                           | Freq:10~55~10Hz<br>Amplitude:0.75mm<br>1cycle time:1min<br>X.Y.Z every<br>direction for 15<br>cycles |                |
| 8  |                       | Shock test(package state)                    | Applying shock to product check normal performance                                                                               | Drop them through<br>70cm height to<br>strike horizontal<br>plane                                    |                |
| 9  | Other                 |                                              |                                                                                                                                  | •                                                                                                    |                |

#### Remark

Note1:Normal operations condition (25°C±5°C).

Note2:Pay attention to keep dewdrops from the module during this test.

## 11.0 DISPLAY INSTRUCTION TABLE

Instruction Table:

| Instruction Table:            | RS | RW | DB7 | DB6 | DB5 | DB4   | DB3  | DB2 | DB1 | DB0 | Description                                                                                                                                                 | Description<br>Time<br>(540KHz) |
|-------------------------------|----|----|-----|-----|-----|-------|------|-----|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Read display data             | 1  | 1  |     |     |     | Read  | data |     |     |     | Read data from DDRAM/CGRAM                                                                                                                                  | 18.5us                          |
| Write display data            | 1  | 0  |     |     |     | Write | data |     |     |     | Write data into DDRAM/CGRAM                                                                                                                                 | 18.5us                          |
| Clear Display                 | 0  | 0  | 0   | 0   | 0   | 0     | 0    | 0   | 0   | 1   | Write "20H" to DDRAM, and set DDRAM<br>address to "00H" from AC                                                                                             | 0.76ms                          |
| Return Home                   | 0  | 0  | 0   | 0   | 0   | 0     | 0    | 0   | 1   | Х   | Set DDRAM address to "00H" from AC and<br>return cursor to its original position if shifted.<br>The contents of DDRAM are not changed.                      | 0.76ms                          |
| Entry Mode Set                | 0  | 0  | 0   | 0   | 0   | 0     | 0    | 1   | I/D | S   | Assign cursor moving direction and specify display shift. These operations are performed during data read and write.  I/D="1": increment I/D="0": decrement | 18.5us                          |
| Display ON/OFF                | 0  | 0  | 0   | 0   | 0   | 0     | 1    | D   | С   | В   | Set Display /Cursor/Blink On/OFF  D="1": display on  D="0": display off  C="1": cursor on  C="0": cursor off  B="1": blink on  B="0": blink off             | 18.5us                          |
| Cursor or Display shift       | 0  | 0  | 0   | 0   | 0   | 1     | S/C  | R/L | Х   | Х   | Cursor or display shift S/C="1": display shift S/C="0": cursor shift R/L="1": shift to right R/L="0": shift to left                                         | 18.5us                          |
| Function Set                  | 0  | 0  | 0   | 0   | 1   | DL    | N    | F   | Х   | Х   | Set Interface Data Length DL= 8-bit interface/ 4-bit interface N = 2-line/1-line display F= 5x8 Font Size / 5x11Font Size                                   | 18.5us                          |
| Set CGRAM Address             | 0  | 0  | 0   | 1   | AC5 | AC4   | AC3  | AC2 | AC1 | ACO | Set CGRAM address in address counter                                                                                                                        | 18.5us                          |
| Set DDRAM Address             | 0  | 0  | 1   | AC6 | AC5 | AC4   | AC3  | AC2 | AC1 | ACO | Set DDRAM address in address counter                                                                                                                        | 18.5us                          |
| Read Busy Flag and<br>Address | 0  | 1  | BF  | AC6 | AC5 | AC4   | AC3  | AC2 | AC1 | ACO | Can know internal operation is ready or not by reading BF. The contents of address counter can also be read. BF="1": busy state BF="0": ready state         | Ous                             |

Note: 1. When an MPU program with Busy Flag(DB7) checking is made, 1/2 FOSC ( is necessary ) for executing the next instruction by the "E" signal after the Busy Flag ( DB7) goes to "Low".

<sup>2. &</sup>quot;X" Don't care

## 12.0 STANDARD CHARACTER PATTERNS

## RW1063 Font table (0A-001)

| <u>b7~4</u><br>b3∾0 | 0000               | 0001 | 0010 | 0011 | 0100 | D 10 1 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 110 <b>1</b> | 1110 | 1111 |
|---------------------|--------------------|------|------|------|------|--------|------|------|------|------|------|------|------|--------------|------|------|
| 0000                | [00]               |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 0001                | DG<br>RAM<br>[D1]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 0010                | [0 2]              |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 0011                | 06<br>RAM<br>[03]  |      | ₩    |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 0100                | [04]               |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 0101                | 06<br>RAM<br>[05]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 0110                | 06<br>RAM<br>[06]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 0 11 1              | 06<br>RAM<br>[07]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 1000                | C6<br>RAM<br>[0 0] |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 1001                | 06<br>RAM<br>[01]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 1010                | 06<br>RAM<br>[02]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 1011                | 06<br>RAM<br>[03]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 1100                | E6<br>RAM<br>[04]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 1101                | 06<br>RAM<br>[05]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 1110                | 00<br>RAM<br>[06]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |
| 1 111               | 06<br>RAM<br>[07]  |      |      |      |      |        |      |      |      |      |      |      |      |              |      |      |

Note: The character generator RAM is the RAM with which the user can rewrite character patterns by program.

#### 13.0 PRECAUTION FOR USING LCM

- 1. When design the product with this LCD Module, make sure the viewing angle matches to its purpose of usage.
- 2. As LCD panel is made of glass substrate, Dropping the LCD module or banging it against hard objects may cause cracking or fragmentation. Especially at corners and edges.
- 3. Although the polarizer of this LCD Module has the anti-glare coating, always be careful not to scratch its surface. Use of a plastic cover is recommended to protect the surface of polarizer.
- 4. If the LCD module is stored at below specified temperature, the LC material may freeze and be deteriorated. If it is stored at above specified temperature, the molecular orientation of the LC material may change to Liquid state and it may not revert to its original state. Excessive temperature and humidity could cause polarizer peel off or bubble. Therefore, the LCD module should always be stored within specified temperature range.
- 5. Saliva or water droplets must be wiped off immediately as those may leave stains or cause color changes if remained for a long time. Water vapor will cause corrosion of ITO electrodes.
- 6. If the surface of LCD panel needs to be cleaned, wipe it swiftly with cotton or other soft cloth. If it is not still clean enough, blow a breath on the surface and wipe again.
- 7. The module should be driven according to the specified ratings to avoid malfunction and permanent damage. Applying DC voltage cause a rapid deterioration of LC material. Make sure to apply alternating waveform by continuous application of the M signal. Especially the power ON/OFF sequence should be kept to avoid latch-up of driver LSIs and DC charge up to LCD panel.
- 8. Mechanical Considerations
  - a) LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.
  - b) Do not tamper in any way with the tabs on the metal frame.
  - Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.
  - d) Do not touch the elastomer connector; especially insert a backlight panel (for example, EL).
  - e) When mounting a LCM makes sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
  - f) Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.
- 9. Static Electricity
  - a) Operator

Ware the electrostatics shielded clothes because human body may be statically charged if not ware shielded clothes. Never touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.

b) Equipment

There is a possibility that the static electricity is charged to the equipment, which has a function of peeling or friction action (ex: conveyer, soldering iron, working table). Earth the equipment through proper resistance (electrostatic earth: 1x10<sup>8</sup> ohm).

Only properly grounded soldering irons should be used.

If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.

c) Floor

Floor is the important part to drain static electricity, which is generated by operators or equipment.

There is a possibility that charged static electricity is not properly drained in case of insulating floor. Set the electrostatic earth (electrostatic earth: 1x10<sup>8</sup> ohm).

d) Humidity

Proper humidity helps in reducing the chance of generating electrostatic charges. Humidity should be kept over 50%RH.

e) Transportation/storage

The storage materials also need to be anti-static treated because there is a possibility that the human body or storage materials such as containers may be statically charged by friction or peeling.

The modules should be kept in antistatic bags or other containers resistant to static for storage.

f) Soldering

Solder only to the I/O terminals. Use only soldering irons with proper grounding and no leakage.

Soldering temperature : 280 $^{\circ}$  C  $\pm$  10 $^{\circ}$  C

Soldering time: 3 to 4 sec.

Use eutectic solder with resin flux fill.

If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed afterwards.

a) Others

The laminator (protective film) is attached on the surface of LCD panel to prevent it from scratches or stains. It should be peeled off slowly using static eliminator.

Static eliminator should also be installed to the workbench to prevent LCD module from static charge.

#### 10. Operation

- a) Driving voltage should be kept within specified range; excess voltage shortens display life.
- b) Response time increases with decrease in temperature.
- c) Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- d) Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".
- 11. If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. The toxicity is extremely low but caution should be exercised at all the time.
- 12. Disassembling the LCD module can cause permanent damage and it should be strictly avoided.
- 13. LCD retains the display pattern when it is applied for long time (Image retention). To prevent image retention, do not apply the fixed pattern for a long time. Image retention is not a deterioration of LCD. It will be removed after display pattern is changed.
- 14. Do not use any materials, which emit gas from epoxy resin (hardener for amine) and silicone adhesive agent (dealcohol or deoxym) to prevent discoloration of polarizer due to gas.
- 15. Avoid the exposure of the module to the direct sunlight or strong ultraviolet light for a long time.