8-bit Enhanced USB Microcontroller CH559

Datasheet Version: 1D http://wch.cn

1. Introduction

CH559 is a MCS51 compatible E8051 core microcontroller, 79% instructions of CH559 is single byte or single cycle, and average instruction speed is 8 to 15 times faster than the standard MCS51.

CH559 support up to 56MHz system clock, built-in 64KB Flash-ROM, 256B on-chip iRAM, 6KB on-chip xRAM, and some of xRAM support DMA mode.

CH559 built-in ADC converter, 4*timers/PWM, 2*UART, 2*SPI, and dual port Root-HUB, which support USB-Host and USB-Device Mode.

Here is CH559 internal block diagram, for reference only.

2. Features

- Core: enhanced E8051 core, compatible with MCS51 instructions, 79% instructions of CH559 is single byte or single cycle, and average instruction speed is 8 to 15 times faster than the standard MCS51, specific fast copy of XRAM data and dual DPTR pointer.
- ROM: 64KB Flash-ROM, support 100K writing cycles, it can be all used for program memory, Or divided into three pieces,60KB for program memory,1KB for data-flash and 3KB for Bootloader or ISP code.
- RAM: 256 bytes on-chip iRAM, for fast data cache or stack pointer;64KB on-chip xRAM, for mass data or DMA operation; support off-chip SRAM extending up to 32KB.
- USB: built-in USB controller, and dual USB transceiver, supports USB-Host and USB-Device mode, support USB 2.0 12Mbps full-speed and 1.5Mbps low-speed. In USB-Host mode,CH559 may manage two USB devices at the same time. Maximum support 64 bytes packet, built-in FIFO and support DMA mode.
- Timer: 4*timers, T0/T1/T2 are standard MCS51 timer, Timer2 is extending to support 2*capturers;

Timer3 is built in 8-level FIFO; support DMA and signal capturing and 16-bit PWM output.

- PWM: 3*PWM output, PWM1/PWM2 are two 8-bit PWM output, Timer3 support 16-bit PWM output.
- UART: 2*UART, UART0 is a standard MCS51 UART;UART1 is compatible with 16C550,built-in 8 bytes FIFO, support RS485 half-duplex mode, support local address presetting for Auto-matching or multi-device communication.
- SPI: 2*SPI controllers, high speed rate up to Fsys/2, SPI0 is built-in FIFO, support Master/Slave mode; SPI1 support Master mode.
- ADC: 8-channel 10-bit or 11-bit AD converter, built-in 2-level FIFO, support DMA mode, sampling rate up to 1Mbps, support 2 channels auto-switching detection.
- LED-CTRL: LED control card interface, high speed rate up to Fsys/2, built-in 4-level FIFO, Support DMA mode.
- XBUS: 8-bit parallel bus, compatible with standard MCS51 bus, support 4 bus speeds.
- GPIO: support up to 45 GPIO,3.3V voltage output, support 5V voltage input except pins:P1.0 \sim P1.7.XI.XO.RST.
- Interrupt: support 14*interrupt sources, including MCS51-compatible 6*interrupts (INT0, T0, INT1, T1, UART0, T2), and extending 8*interrupts (SPI0, TMR3, USB, ADC, UART1, PWM1, GPI0, WDOG).
- Watch-Dog: 8-bit configurable presetting watch dog, support timer interrupt.
- Reset: Support 4 reset sources, built-in power-on reset, software reset, watchdog over flow reset and configurable external input reset.
- Clock: built-in 12MHz clock, support external crystal oscillator, built-in PLL for USB clock and Fsys.
- Power: built-in 5V to 3.3V LDO, 3.3V working voltage internal, support 3.3V and 5V voltage input. Support low power sleep mode, support USB, UARTO, UART1, SPI0 and some GPIOs wake-up.
- ID: each chip built-in a global unique identification number (ID).
- 3. Package

Package	Witch of	plastic	Pitch	of pin	Instruction	Ordering type
LQFP-48	7*7mm		0.5mm	19.7mil	Standard LQFP48	CH559L
SSOP-20	5.30mm	209mil	0.65mm	25mil	Supper small 20 Pins	CH559T

4. Pins

Pin-n	umber	Pin	Other function name	
SSOP2	LQFP4	name	(left preferential)	Function description
0	8	name	(left preferential)	
19	41	VIN5	V5	5V external voltage input,0.1uF decoupling capacitor
19	41	VIINJ	¥5	to the ground.
				Internal voltage adapter output and internal 3.3V
20	42	VDD3	VDD/VCC	working voltage input. connect to pin VIN5
20	12	3		when power voltage < 3.6 V,connect to decoupling
				capacitors when power voltage >3.6V
18	18	GND	VSS	Ground
-	40	P0.0	AD0/UDTR	P0: 8-bit open-drain port, may be configured to
-	39	P0.1	AD1/URTS	quasi-bidirectional port by configuring register P0_PU
17	38	P0.2	AD2/RXD_	to enable the pull-up resistor.
16	37	P0.3	AD3/TXD_	P0 will auto switch to push-pull output modes
-	36	P0.4	AD4/UCTS	temporarily when access xbus; and output the low
-	35	P0.5	AD5/UDSR	8-bit address when access xbus in address
-	34	P0.6	AD6/URI	multiplexing mode.
				UDTR, URTS: UARTI modem signal output.
-	33	P0.7	AD7/UDCD	UCTS,UDSR,URI,UDCD : UARTI modem signal
				Input.
	12	D1 0		RXD_,1XD_: RXD,1XD pin mapping.
-	43	P1.0	AINO/12/CAPI	AIN $0 \sim$ AIN /: 8 channel ADC signal input.
-	44	PI.I	AIN1/12EX/CAP2	12: timer/counter2 external count input/clock output.
1	45	P1.2	AIN2/PWM3/CAP3	12EX: 11mer/counter2 reload/capture input.
-	46	P1.3	AIN3	CAP3/PWM3: 11mer/counter3 captures input/PWM
2	47	P1.4	AIN4/SCS	Output.
3	48	P1.5	AIN5/MOSI	SCS, MOSI, MISO, SCK: SPI0, SCS is chip-selection
4	1	P1.6	AIN6/MISO	ate input, MISO is master serial data output or slave serial
5	2	P1.7	AIN7/SCK	serial data output, SCK is serial clock.
-	21	P2.0	A8	P2 will auto switch to push-pull output modes
-	22	P2.1	MOSI1/A9	temporarily when access xbus and output the high
-	23	P2.2	MISO1/A10	8-bit address: A8~A15.
-	24	P2.3	SCK1/A11	MOSI1,MISO1,SCK1: SPI1,MOSI1 is master output,
-	25	P2.4	PWM1/A12	MISO is master input, SCK1 is serial clock,
11	26	D2 5	TNOW/PWM2/A13	PWM1,PWM2: PWM1 output.PWM2 output.
11	20	P2.3	/T2EX_/CAP2_	TNOW: UART1 transmitting indicating.
12	27	P2.6	RXD1/A14	T2EX_/CAP2_: T2EX/CAP2 pin-mapping.
13	28	P2.7	TXD1/DA7/A15	RXD1,TXD1: UART1serial data input, serial data output.

				DA7: Address A7 output in direct-address mode.
-	4	P3.0	RXD	RXD,TXD: UARTO serial data input, serial data
-	7	P3.1	TXD	output.
7	8	P3.2	LED0/INT0	INT0,INT1: External interrupt0, interrupt1 Input.
-	9	P3.3	LED1/!A15/INT1	LED0, LED1, LEDC: LED data0, data1, clock output.
8	10	P3.4	LEDC/XCS0/T0	!A15: external parallel bus address A15 opposite
-	11	P3.5	DA6/T1	output, for chip selection.
-	12	P3.6	WR	T0,T1: timer0, timer1 external input.
-	13	P3.7	RD	XCS0: chip selection of external parallel bus address from 4000h to 7FFFh.DA6: Address A6 output in direct-address mode.WR,RD: External parallel bus write and read signal.
-	20	P4.0	LED2/A0/RXD1_	
-	19	P4.1	A1	A0 \sim A5: Low 6-bit address output in direct address
-	15	P4.2	PWM3_/CAP3_/A2	mode when access xbus.
-	14	P4.3	PWM1_/A3	LED2, LED3: LED data2, data3 output.
-	6	P4.4	LED3/TNOW_/TXD1_/ A4	mapping.
-	5	P4.5	PWM2_/A5	output
9	16	P4.6	XI/SCS_	SCS SCK · SPI0's SCS and SCK pin mapping
10	17	P4.7	X0/SCK_	Sob_,Sork_, Si is a sob and bort pin impping.
15	32	P5.0	DM	DM DP: D D signals
14	31	P5.1	DP	DIVI, DF. D+, D- Signais.
-	30	P5.4	HM /ALE/XB	XB,XA: IRS485 A,B signals
-	29	P5.5	HP /!A15/XA	MLE : Address laten signal output in address multiplexing mode.
6	3	P5.7	RST	External reset input, built-in pull-down resistor.

5. Special Function Register

Abbreviation and description in this datasheet.

Abbreviation	description
RO	Read-only
WO	Wrtite-only
RW	Read and Write
h	Hex
b	Binary

5.1 SFR instruction and address distribution

CH559 use SFR and xSFR to control and manage device and set work models.

SFR use address from 80h to FFh of internal data memory, and can only be accessed by direct- address instructions. Some addresses support bit addressing such as x0h and x8h, others only support byte

Some SFR can be written only in safe mode, and is read-only in unsafe mode, such as: GLOBAL_CFG、PLL_CFG、CLOCK_CFG、SLEEP_CTRL、WAKE_CTRL.

Some SFR may have one or more names, such as SPI0_CK_SE/SPI0_S_PRE.UDEV_CTRL/UHU-B0_CTRL,UEP1_CTRL/UH_SETUP,UEP2_CTRL/UH_RX_CTRL,UEP2_T_LEN/UH_EP_PID,UEP3_C TRL/UH_TX_CTRL,UEP3_T_LEN/UH_TX_LEN.P5_PIN/P4_CFG.

Some addresses may correspond to multiple separate SFR. such as TL2/T2CAP1L,TH2/T2CAP1H,S-AFE_MOD/CHIP_ID,T3_COUNT_L/T3_CK_SE_L,T3_COUNT_H/T3_CK_SE_H,SER1_FFO/SER1_ RBR/SER1_THR/SER1_DLL,SER1_IER/SER1_DLM,SER1_IIR/SER1_FCR,SER1_ADDR/SER1_DIV, ROM_CTRL/ROM_STATUS.

xSFR use address from 2440h-298Fh of external data memory, or 40h-8Fh of pdata type.

Some xSFR may have one or more names, such as UEP2_3_MOD/UH_EP_MOD, UEP2_DMA_H/UH_RX_DMA_H,UEP2_DMA_L/UH_RX_DMA_L,UEP2_DMA/UH_RX_DMA,UEP3 _DMA_H/UH_TX_DMA_H,UEP3_DMA_L/UH_TX_DMA_L,UEP3_DMA/UH_TX_DMA.

Some addresses may correspond to multiple separate xSFR. Such as LED_DATA/LED_FIFO_CN. CH559 contains all the standard registers of 8051, and adds some others, details below.

SFR	0.8	1.9	2.A	3.B	4.C	5.D	6.E	7.F
0xF8	SPI0_STAT	SPI0_DATA	SPI0_CTRL	SPI0_CK_SE SPI0_S_PRE	SPI0_SETUP	XBUS_SPEE D	RESET_KEE P	WDOG_CO UNT
0xF0	В	ADC_STAT	ADC_CTRL	ADC_CHAN N	ADC_FIFO_ L	ADC_FIFO_ H	ADC_SETU P	ADC_EX_S W
0xE8	IE_EX	IP_EX	SLEEP_CTR L	WAKE_CTR L	ADC_DMA_ AL	ADC_DMA_ AH	ADC_DMA_ CN	ADC_CK_S E
0xE0	ACC	USB_INT_E N	USB_CTRL	USB_DEV_ AD	UDEV_CTR L UHUB0_CT RL	UHUB1_CT RL	USB_DMA_ AL	USB_DMA_ AH
0xD 8	USB_INT_F G	USB_INT_S T	USB_MIS_S T	USB_HUB_S T	UEP0_CTRL	UEP0_T_LE N	UEP4_CTRL	UEP4_T_LE N
0xD 0	PSW	USB_RX_LE N	UEP1_CTRL UH_SETUP	UEP1_T_LE N	UEP2_CTRL UH_RX_CT RL	UEP2_T_LE N UH_EP_PID	UEP3_CTRL UH_TX_CT RL	UEP3_T_LE N UH_TX_LE N
0xC 8	T2CON	T2MOD	RCAP2L	RCAP2L	TL2 T2CAP1L	TH2 T2CAP1H	PIN_FUNC	GPIO_IE
0xC 0	P4_OUT	P4_IN	P4_DIR	P4_PU	P0_DIR	P0_PU	PORT_CFG	P5_PIN P4_CFG
0xB 8	IP	P1_IE	P1_DIR	P1_PU	P2_DIR	P2_PU	P3_DIR	P3_PU
0xB 0	Р3	GLOBAL_C FG	PLL_CFG	CLOCK_CF G	SPI1_STAT	SPI1_DATA	SPI1_CTRL	SPI1_CK_SE
0xA 8	IE	T3_STAT	T3_CTRL	T3_DMA_C N	T3_DMA_A L	T3_DMA_A H	T3_FIFO_L	T3_FIFO_H
0xA	P2	SAFE_MOD	XBUS_AUX	T3_SETUP	T3_COUNT_	T3_COUNT_	T3_END_L	T3_END_H

Table 5.1 table of SFR

0		CHIP_ID			L	Н		
					T3_CK_SE_	T3_CK_SE_		
					L	Н		
008	SCON	CDITE	SER1_FIFO	PWM_DATA	DWM DATA	DWM CTDI	PWM_CK_S	PWM_CYCL
0.0.98	SCON	SDUF	SER1_DLL	2		r wwi_cikl	Е	Е
		SEP1 IEP	SED1 HD					SER1_ADD
0x90	P1	SER1 DI M	SER1 FCR	SER1_LCR	SER1_MCR	SER1_LSR	SER1_MSR	R
		SERI_DEM						SER1_DIV
0v88	TCON	TMOD	ΤLO	TT 1	THO	TH1	ROM_DATA	ROM_DATA
0700							_L	_H
					POM ADDP	POM ADDP	ROM_CTRL	
0x80	P0	SP	DPL	DPH	I	H	ROM_STAT	PCON
					_L	_п	US	

Note :(1)Red indicates supporting bit addressing,(2)color description below.

Register address
SPI0 relative register
ADC relative register
USB relative register
TIMER/COUNTER2 relative register
GPIO relative register
SPI1 relative register
PWM1 and PWM2 relative register
UART1 relative register
TIMER/COUNTER 0 and 1 relative register
Flash-ROM relative register

5.2 SFR classification and reset value

Table 5.2 Description and reset value of SFR and xSFR

Function	Name	Address	Description	Reset value
	В	F0h	General purpose register B	0000 0000b
	ACC	E0h	Accumulator	0000 0000b
	PSW	D0h	Program status register	0000 0000b
	CLOBAL CEG	P1h	Global configuration register(Bootloader)	1110 0000b
Sustam	OLOBAL_CIO	DIII	Global configuration register(application)	1100 0000b
Bogistors	CHIP_ID	Alh	Chip ID identification number(read-only)	0101 1001b
Registers	SAFE_MOD	Alh	Safe mode control register(write-only)	0000 0000b
	DPH	83h	Data pointer high	0000 0000b
	DPL	82h	Data pointer low	0000 0000b
	DPTR	82h	16-bit SFR consists of DPL and DPH	0000h
	SP	81h	Stack pointer	0000 0111b
Clock and	WDOG_COUNT	FFh	Watch-dog count register	0000 0000b
Sleep and	RESET_KEEP	FEh	Value keeper during reset	0000 0000b
Power	WAKE_CTRL	EBh	Wake-up control register	0000 0000b
Registers	SLEEP_CTRL	EAh	Sleep control register	0000 0000b

	CLOCK_CFG	B3h	System clock configuration register	1001 1000b
	PLL_CFG	B2h	PLL clock configuration register	1101 1000b
	PCON	87h	power control register during reset	0001 0000b
	IP_EX	E9h	Extend interrupt priority control register	0000 0000b
T	IE_EX	E8h	Extend interrupt enable register	0000 0000b
Interrupt	GPIO_IE	CFh	GPIO interrupt enable register	0000 0000b
Registers	IP	B8h	Interrupt priority control register	0000 0000b
	IE	A8h	Interrupt enable register	0000 0000b
	ROM_DATA_H	8Fh	Data high byte for flash-ROM writing	xxxx xxxxb
	ROM_DATA_L	8Eh	Data low byte for flash-ROM writing	xxxx xxxxb
		0.51	16-bit SFR consists of ROM_DATA_L	
Flash-ROM	ROM_DATA	8Eh	and ROM_DATA_H	xxxxh
and	ROM_STATUS 86h Flash-ROM status reg		Flash-ROM status register(read-only)	1000 0000b
Data-Flash	ROM_CTRL	86h	Flash-ROM control register(write-only)	0000 0000b
Registers	ROM_ADDR_H	85h	Address high byte for flash-ROM	xxxx xxxxb
	ROM_ADDR_L	84h	Address low byte for flash-ROM	xxxx xxxxb
		0.41	16-bit SFR consists of ROM_ADDR_L	
	ROM_ADDR	84h	and ROM_ADDR_H	xxxxh
	XBUS_SPEED	FDh	XBUS speed configuration register	1111 1111b
	XBUS_AUX	A2h	XBUS auxiliary setting register	0000 0000b
	PIN_FUNC	CEh	Pin function selection register	0000 0000b
	P4_CFG	C7h	Port4 configuration register	0000 0000b
	P5_IN	C7h	Port5 input register (read-only)	0000 0000b
	PORT_CFG	C6h	Port configuration register	0000 1111b
	DO DU	C51	Port0 pull-up enable register	0000 0000b
	PORT_CFG P0_PU		Port0 pull-up enable register	1111 1111b
	P0_DIR	C4h	Port0 direction control register	0000 0000b
	P4_PU	C3h	Port4 pull-up enable register	1111 1111b
	P4_DIR	C2h	Port4 direction control register	0000 0000b
Davit Da aiatana	P4_IN	C1h	Port4 input register (read-only)	1111 1111b
Port Registers	P4_OUT	C0h	Port4 output register	0000 0000b
	P3_PU	BFh	Port3 direction control register	1111 1111b
	P3_DIR	BEh	Port3 pull-up enable register	0000 0000
	P2_PU	BDh	Port2 pull-up enable register	1111 1111b
	P2_DIR	BCh	Port2 direction control register	0000 0000b
	P1_PU	BBh	Port2 pull-up enable register	1111 1111b
	P1_DIR	BAh	Port1 direction control register	0000 0000b
	P1_IE	B9h	Port1 input enable register	1111 1111b
	P3	B0h	Port3 input & output register	1111 1111b
	P2	A0h	Port2 input & output register	1111 1111b
	P1	90h	Port1 input & output register	1111 1111b
	P0	80h	Port0 input & output register	1111 1111b
	TH1	8Dh	High byte of timer1 count register	xxxx xxxxb

C	7	
2	۶.	
۰.	,	

Timer0/1TH08ChHigh byte of timer0 count registerRegistersTL18BhLow byte of timer1 count register	xxxx xxxxb
Registers TL1 8Bh Low byte of timer 1 count register	
	xxxx xxxxb
TL0 8Ah Low byte of timer0 count register	xxxx xxxxb
TMOD89hTimer0/1 mode register	0000 0000b
TCON 88h Timer0/1 control register	0000 0000b
UART0 SBUF 99h UART0 data register	xxxx xxxxb
Registers SCON 98h UART0 control register	0000 0000b
TH2 CDh High byte of timer2 count	0000 0000b
TL2 CCh Low byte of timer2 count	0000 0000b
T2COUNT CCh 16-bit SFR consists of TL2 and TH2	0000h
Capture1 value high byte for timer2(read-	1
12CAPIH CDn only)	XXXX XXXXD
Capture1 value low byte for timer2(read-	1
TT 2/G / Only)	xxxx xxxxb
11mer2/Captu T2CAP1 CCI 16-bit SFR consists of T2CAP1L and	1
rez Registers 12CAP1 CCh T2CAP1H	xxxxh
RCAP2H CBh High byte of reload & capture2 value	0000 0000b
RCAP2L CAh High byte of reload & capture2 value	0000 0000b
DCAP2 CAL 16-bit SFR consists of RCAP2L and	00001
RCAP2 CAN RCAP2H	0000n
T2MOD C9h Timer2 mode register	0000 0000b
T2CON C8h Timer2 control register	0000 0000b
Timer3/Captu T3_FIFO_H AFh FIFO high byte of Timer3	xxxx xxxxb
re3 Registers T3_FIFO_L AEh FIFO low byte of Timer3	xxxx xxxxb
T2 FIFO 16-bit SFR consists of T3_FIFO_L and	1
T3_FIFO_H	xxxxn
T3_DMA_AH ADh DMA address high byte	0000 xxxxb
T3_DMA_AL ACh DMA address low byte	xxxx xxx0b
T2 DMA 16-bit SFR consists of T3_DMA_AL and	0 1
T3_DMA ACn T3_DMA_AH	Oxxxn
T3_DMA_CN ABh DMA remainder word count register	0000 0000b
T3_CTRL AAh Timer3 control register	0000 0010b
T3_STAT A9h Timer3 status register	0000 0000b
High byte of end value for count of	1
Timer3	XXXX XXXXD
Low byte of end value for count of	1
Timer3	XXXX XXXXD
T2 END 16-bit SFR consists of T3_END_L and	1
T3_ENDAOnT3_END_H	XXXXN
T2 COUNT II Current count high byte of Timer3(read	0000 00001-
IS_COUNT_IN ASI only)	
T2 COUNT I Current count low byte of Timer3(readon-	0000 00001
IS_COUNT_L A4n ly)	
T3_COUNT A4h 16-bit SFR consists of T3_COUNT_L	0000h

_	
.7	

			and T3_COUNT_H		
	T3_CK_SE_H	A5h	Clock divisor setting high byte of Timer3	0000 0000b	
	T3_CK_SE_L	A4h	Clock divisor setting low byte of Timer3	0010 0000b	
		A 41	16-bit SFR consists of T3_CK_SE_L and	00201	
	13_CK_SE	A4h	T3_CK_SE_H	0020h	
	T3_SETUP	A3h	Timer3 setup register	0000 0100b	
	PWM_CYCLE	9Fh	PWM cycle period register	xxxx xxxxb	
	PWM_CK_SE	9Eh	Clock divisor setting register	0000 0000b	
PWM1/2	PWM_CTRL	9Dh	PWM control register	0000 0010b	
Registers	PWM_DATA	9Ch	PWM1 data register	xxxx xxxxb	
	PWM_DATA2	9Bh	PWM2 data register	xxxx xxxxb	
	SPI0_SETUP	FCh	SPI0 setup register	0000 0000b	
	SPI0_S_PRE	FBh	Preset value for SPI slave register	0010 0000b	
SPI0	SPI0_CK_SE	FBh	Clock divisor setting register	0010 0000b	
Registers	SPI0_CTRL	FAh	SPI0 control register	0000 0010b	
	SPI0_DATA	F9h	SPI0 Data register	xxxx xxxxb	
	SPI0_STAT	F8h	SPI0 status register	0000 1000b	
	SPI1_CK_SE	B7h	SPI1 clock divisor setting register	0010 0000b	
SPI1	SPI1_CTRL	TRL B6h SPI1 control register			
Registers	SPI1_DATA	B5h	SPI1 Data register	xxxx xxxxb	
	SPI1_STAT	B4h	SPI1 status register	0000 1000b	
	SER1_DLL	9Ah	UART1 divisor latch LSB byte	xxxx xxxxb	
	SER1_FIFO	9Ah	UART1 FIFO data register	xxxx xxxxb	
	SER1_DIV	97h	UART1 pre-divisor latch	0xxx xxxxb	
	SER1_ADDR	97h	UART1 bus address preset register	1111 1111b	
	SER1_MSR	96h	UART1 modem status register(read-only)	1111 0000b	
UART1	SER1_LSR	95h	UART1 line status(read-only)	0110 0000b	
Registers	SER1_MCR	94h	UART1 modem control register	0000 0000b	
registers	SER1_LCR	93h	UART1 line control register	0000 0000b	
	SER1_IIR	92h	UART1 interrupt identification register (read-only)	0000 0001b	
	SER1_FCR	92h	UART1 FIFO control register(write-only)	0000 0000b	
	SER1_DLM	91h	UART1 divisor latch MSB byte	1000 0000b	
SER1_IER 91h UART		UART1 interrupt enable register	0000 0000b		
ADC	ADC_EX_SW	F7h	ADC extend switch control register	0000 0000b	
Registers	ADC_SETUP	F6h	ADC setup register	0000 1000b	
	ADC_FIFO_H	F5h	ADC FIFO high byte(read-only)	0000 0xxxb	
	ADC_FIFO_L	F4h	ADC FIFO low byte(read-only)	xxxx xxxxb	
	ADC_FIFO	F4h	16-bit SFR consists of ADC_FIFO_L and ADC_FIFO_H	0xxxh	
	ADC CHANN	F3h	ADC channel selection register	0000 0000b	
	ADC CTRL	F2h	ADC control register	0000 0000b	
	ADC_STAT	F1h	0000 0100b		

	ADC_CK_SE	EFh	ADC clock divisor setting register	0001 0000b
	ADC_DMA_CN	EEh	DMA remainder word count register	0000 0000b
	ADC_DMA_AH	EDh	DMA address high byte	0000 xxxxb
	ADC_DMA_AL	ECh	DMA address low byte	xxxx xxx0b
		ECh	16-bit SFR consists of ADC_DMA_AL	Owwyh
	ADC_DMA	LCII	and ADC_DMA_AH	UXXXII
	USB DMA AH	E7h	Current DMA address high byte(read-	000x xxxxb
		2711	only)	ooon minno
	USB DMA AL	E6h	Current DMA address low byte(read-	xxxx xxx0b
		-	only)	
	USB DMA	E6h	16-bit SFR consists of USB_DMA_AL	xxxxh
			and USB_DMA_AH	
	UHUB1_CTRL	E5h	USB HUB1 control register	1100 x000b
	UHUB0_CTRL	E4h	USB HUB0 control register	0100 x000b
	UDEV_CTRL	E4h	USB device port control register	0100 x000b
	USB_DEV_AD	E3h	USB device address register	0000 0000b
	USB_CTRL	E2h	USB control register	0000 0110b
	USB_INT_EN	E1h	USB interrupt enable register	0000 0000b
	UEP4_T_LEN	DFh	Endpoint4 transmittal length register	0xxx xxxxb
	UEP4_CTRL	DEh	Endpoint4 control register	0000 0000b
	UEP0_T_LEN	DDh	Endpoint0 transmittal length register	0xxx xxxxb
	UEP0_CTRL	DCh	Endpoint 0 control register	0000 0000b
USB	USB_HUB_ST	DBh	USB host hub status register(read-only)	0000 0000b
Registers	USB_MIS_ST	DAh	USB miscellaneous status register(read-	xx10 1000b
-			only)	00
	USB_INT_ST	D9h	USB interrupt status register(read-only)	00xx xxxxb
	USB_INT_FG	D8h	USB interrupt flag register	0010 0000b
	UEP3_T_LEN	D7h	Endpoint3 transmittal length register	Oxxx xxxxb
	UH_TX_LEN	D7h	USB host transmittal length register	0xxx xxxxb
	UEP3_CTRL	D6h	Endpoint3 control register	0000 0000b
	UH_TX_CTRL	D6h	USB host transmittal endpoint control re- gister	0000 0000b
	UEP2_T_LEN	D5h	Endpoint2 transmittal length register	0000 0000b
	UH_EP_PID	D5h	USB host endpoint and token PID register	0000 0000b
	UEP2_CTRL	D4h	Endpoint2 control register	0000 0000b
		D.(1	USB host receiver endpoint control	0000 00001
	UH_RX_CTRL	D4h	register	0000 0000b
	UEP1_T_LEN	D3h	Endpoint1 transmittal length register	0xxx xxxxb
	UEP1_CTRL	D2h	Endpoint1 control register	0000 0000b
	UH_SETUP	D2h	USB host auxiliary setup register	0000 0000b
	USB_RX_LEN	D1h	USB receiving length register(read-only)	0xxx xxxxb
	UEP4_1_MOD	2446h	Endpoint1&4 mode control register	0000 0000b
	UEP2_3_MOD	2447h	Endpoint2&3 mode control register	0000 0000b
	UH_EP_MOD	2447h	USB host endpoint mode control register	0000 0000b

USB	UEDO DMA H	2448h	Endpoint0&4 buffer start address high	000x xxxxh	
auxiliary		244011	byte	0002 22220	
Registers on	LIEPO DMA L	2449h	Endpoint0&4 buffer start address low	xxxx xxx0b	
xSFR	OEI 0_DWIX_E	244911	byte		
	UEPO DMA	2448h	16-bit SFR consists of UEP0_DMA_L	xxxxh	
		21101	and UEP0_DMA_H	ллліі	
	UEP1_DMA_H	244Ah	Endpoint1 buffer start address high byte	000x xxxxb	
	UEP1_DMA_L	244Bh	Endpoint1 buffer start address low byte	xxxx xxx0b	
	UEP1_DMA	244Ah	16-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H	xxxxh	
	UEP2_DMA_H	244Ch	Endpoint2 buffer start address high byte	000x xxxxb	
	UEP2_DMA_L	244Dh	Endpoint2 buffer start address low byte	xxxx xxx0b	
			16-bit SFR consists of UEP2 DMA L		
	UEP2_DMA	244Ch	and UEP2 DMA H	xxxxh	
	UH_RX_DMA_		USB host rx endpoint buffer start address		
	н – – –	244Ch	high byte	000x xxxxb	
	UH_RX_DMA_	24451	USB host rx endpoint buffer start address	01	
	L	244Dh	low byte	xxxx xxx0b	
		24461	16-bit SFR consists of UH_RX_DMA_L	1	
	UH_RX_DMA	244Ch	and UH_RX_DMA_H	xxxxh	
	UEP3_DMA_H	244Eh	Endpoint3 buffer start address high byte	000x xxxxb	
	UEP3_DMA_L	244Fh	Endpoint3 buffer start address low byte	xxxx xxx0b	
	LIED2 DMA	244Eb	16-bit SFR consists of UEP3_DMA_L	h	
	OEF5_DMA	244EII	and UEP3_DMA_H	АЛЛЛІІ	
	UH_TX_DMA_	244Eb	USB host tx endpoint buffer start address	000v vvvvb	
	Н	244EII	high byte	0002 22220	
	UH_TX_DMA_	244Eb	USB host tx endpoint buffer start address	xxxx xxx0b	
	L	244111	low byte	лллл ллл00	
	μή τχ όμα	244Eh	16-bit SFR consists of UH_TX-DMA-L	xxxxh	
		2111211	and UH_TX_DMA_H	лллп	
			It is used for finding address of xSFR in		
	pU*	254*h	pdata type above while bXIR_xSFR is set		
			1, which is faster than xdata type		
LED	LED_STAT	2880h	LED status register	010x 0000b	
Registers on	LED_CTRL	2881h	LED control register	0000 0010b	
xSFR	LED_FIFO_CN	2882h	FIFO count status register(read-only)	0000 0000b	
	LED_DATA	2882h	LED data register	xxxx xxxxb	
	LED_CK_SE	2883h	LED clock divisor setting register	0001 0000b	
	LED_DMA_AH	2884h	DMA address high byte	000x xxxxb	
	LED_DMA_AL	2885h	DMA address low byte	xxxx xxx0b	
	LED DMA	2884h	16-bit SFR consists of LED_DMA_AL	xxxxh	
		_00 m	and LED_DMA_AH		
	LED_DMA_CN	2886h	LED DMA remainder word count register	xxxx xxxxb	
	LED_DMA_XH	2888h	Aux DMA buffer address high byte	000x xxxxb	

LED_DMA_XL	2889h	Aux DMA buffer address low byte	xxxx xxx0b
LED DMA V	2000h	16-bit SFR consists of LED_DMA_XL	h
LED_DMA_X	28880	and LED_DMA_XH	ХХХХП
		It is used for finding address of xSFR	
pLED_*	298*h	above in pdata type while bXIR_xSFR is	
		set 1, which is faster than xdata type	

5.3 General 8051 register

Table 5.3.1 List of general 8051 registers

Name	Address	Description	Reset value
В	F0h	Register B	00h
A.ACC	E0h	Accumulator	00h
PSW	D0h	Program status register	00h
CLOPAL CEC	D1h	Global configuration register(Bootloader)	E0h
OLOBAL_CFO	DIII	Global configuration register(application)	C0h
CHIP_ID	A1h	Chip ID identification number(read-only)	59h
SAFE_MOD	A1h	Safe mode control register(write-only)	00h
PCON	87h	Power control register during reset	10h
DPH	83h	Data pointer high	00h
DPL	82h	Data pointer low	00h
DPTR	82h	16-bit SFR consists of DPL and DPH	0000h
SP	81h	Stack pointer	07h

B - register

Bit	Name	Access	Description	Reset value
[7:0]	В	RW	Arithmetic register is used for multiplication and division; it support bit addressing.	00h

A/ACC - register

Bit	Name	Access	Description	Reset value
[7:0]	A/ACC	RW	Arithmetic accumulator support bit addressing	00h

PSW - Program status word

Bit	Name	Access	Description	Reset value
7	СҮ	RW	Carry Flag : it is used for recording carry or borrow of the highest bit; this bit is set when the last arithmetic operation resulted in a carry(addition) or a borrow (subtraction).it is cleared to 0 by all other arithmetic operations	0
6	AC	RW	Auxiliary Carry Flag: This bit is set 1 when the last arithmetic operation resulted in a carry into(addition) or a borrow from(subtraction)the high order nibble. it is cleared to 0 by all other arithmetic operations	0

5	F0	RW	Flag0:Available to the user for general purposes	0
4	RS1	RW	Register bank select control bit 1	0
3	RS0	RW	Register bank select control bit 0	0
			Overflow Flag:	
			This bit is set to 1 under the following circumstances:	
			*An ADD ,ADDC, or SUBB instruction causes a	
			sign-change	
2	OV	RW	*A MUL instruction results in an overflow(result is	0
			greater than 255)	
			*A DIV instruction causes a divide-by-zero condition	
			The OV bit is cleared to 0 by the ADD, ADDC, SUBB,	
			MUL, and DIV instructions in all other cases	
1	F1	RW	Flag1 :User-defined flag	0
			Parity Flag: This bit is set to 1 if the sum of the eight	
0	Р	RO	bits in the accumulators is odd and cleared if the sum	0
			is even	

The program status word(PSW)contains several status that reflects the current state of the CPU. it contains the carry bit ,the auxiliary carry(for BCD operation), parity bit ,overflow bit and the two register bank select bits RS0 and RS1, the space of register bank may be accessed by direct or indirect way. Table5.3.2 List of register bank RS1 AND RS0

	U	
RS1	RS0	Register bank
0	0	Bank0(00h-07h)
0	1	Bank1(08h-0fh)
1	0	Bank2(10h-17h)
1	1	Bank3(18h-1fh)

Operation	CY	OV	AC	Operation	CY	OV	AC
ADD	Х	Х	Х	SETB C	1		
ADDC	Х	Х	Х	CLR C	0		
SUBB	Х	Х	Х	CPL C	Х		
MUL	0	Х		MOV C, bit	Х		
DIV	0	Х		ANL C, bit	Х		
DAA	Х			ANL C,/bit	Х		
RRC A	Х			ORLC, bit	Х		
RLC A	Х			ORL C,/bit	Х		
CJNE	Х						

Table 5.1.3 Operations affecting flag bits

DPTR - Data pointer register

Bit	Name	Access	Description	Reset value
[7:0]	DPL	RW	Data pointer low byte	00h
[7:0]	DPH	RW	Data pointer high byte	00h

The 16-bit data pointer consists of DPL and DPH is used for visiting XSFR, XBUS, XRAM data memory or program memory. Actually, DPTR has two physical 16-bit data pointer DPTR0 and DPTR1;

13

14

they are switched by the register bit DPS/XBUS_AUX.

SP- Stack pointer

Bit	Name	Access	Description	Reset value
[7:0]	SP	RW	Stack pointer is used for program and interrupt call,	07h
			also for data push and pull.	

5.4 Unique register

GLOBAL_CFG- Global configuration register, written only in safe mode

Bit	Name	Access	Description	Reset value
[7:6]	RESERVED	RO	Fixed value 11	11b
5	bBOOT_LOAD	RO	Boot loader state for discriminating Bootloader or Application: set 1 by power on reset, clear 0 by software reset For all chips with ISP boot loader: 1 = it has never been software reset, in ISP Bootload state 0 = it has been software reset, in application state	1
4	bSW_RESET	RW	Software reset bit, trigger software reset while this bit is set 1,auto cleared by hard- ware	0
3	bCODE_WE	RW	Flash-ROM program or erase enable: 0 = writing protect. 1 = enable program and erase.	0
2	bDATA_WE	RW	Data-Flash program or erase enable: 0 = writing protect. 1 = enable program and erase.	0
1	bXIR_XSFR	RW	MOVX_@R0/@R1 command field control bit: 0 = MOVX_@R0/@R1 for standard xdata area 1 = MOVX_@R0/@R1 for xSFR only	0
0	bWDOG_EN	RW	 watch-dog reset enable bit: if watch-dog timer overflow: 0 = as timer only. 1 = enable reset if timer overflow. 	0

CHIP_ID - Chip ID identification number

BIT	Name	Access	Description	Reset value
[7:0]	CHIP_ID	RO	Fixed value 59h, used for chip identification	59h

SAFE_MOD - Safe mode control register

Bit	Name	Access	Description	Reset value
[7:0]	SAFE_MOD	WO	To enter or get out of safe mode	00h

Some SFR register can be written only in safe mode; otherwise, it is read-only the steps to enter into

safe mode:

(1) Write 55h to register.

(2) write AAH to register.

(3) 13-23 system frequency periods are in safe mode, one or more safe SFRs or general SFRs can be changed during this time.

(4) After the period expires, safe mode ends automatically.

(5) Write anything to this register can get out of safe mode in advance.

6. Memory structure

6.1 Memory space

CH559 addressing memory is divided into program memory, internal code memory and external data memory.

Inter	nal Data Address Space		
FFH	Upper 128 bytes internal RAM	SFR	
80H	(Indirect addressing by @RO/R1)	(Direct addressing)	
7FH	Lower 128 bytes internal RAM		
00Н	(Direct or indirect addressing)		
Exter	nal Data Address Space	Program Address Space	
FFFFH	xCS1/xBUS1 @xdata, 32KB	Configuration information	FFFFH
8000H	(Indirect addressing by MOVX)	ROM_CFG_ADDR	FFFEH
7FFFH	xCSO/xBUSO @xdata, 16KB	Boot Loader Code Flash	FFFDH
4000H	(Indirect addressing by MOVX)	BOOT_LOAD_ADDR	E400H
3FFFH	Reserved area @xdata	Data Flash or Code Flash	F3FFH
2990H 298FH	vSER area @vdata	DATA_FLASH_ADDR	
	(Indirect addressing by MOVX)		EFFFH
2440H 243FH	Percerved area @vdata		
1800H		Application Code Flash	
17FFH	6KB on-chip expanded xRAM @xdata		
0000H	(Indirect addressing by MOVX)		0000H

Table 6.1 diagram of memory structure

6.2 Program memory

Program memory is total 64KB, and all is used for flash-ROM, include Code-Flash, Data -Flash, and Configuration Information space.

Data-Flash addressing from F000h to F3FFh, support byte read, dual-byte write, and block (1K byte) erase, keeping the data after chip power-down, and also may be used for Code-flash.

Code-Flash includes application code of low address and Bootloader code of high address. they can

also be combined with Data-Flash for storing single application code.

Configuration Information is total 16 bit, and may be configured by programmer, refer to table 6.1.

Tab 6.2 description of flash-ROM Configuration Information

Address	Name	Description	Reset value
		Code and data protection mode of flash-ROM:	
15	Code_Protect	0 = Reading behavior forbidden.	0/1
		1 = Reading behavior permit	
		Bootloader start mode enable:	
14	No_Boot_Load	0 = Start from address 0000h.	1
		1 = Start from address F400h	
		Additional delay during power-up reset enable:	
13	En_Long_Reset	0 = Standard short delay.	0
		1 = Long reset, add 87ms.	
	XT_OSC_Stron	Crystal oscillator output driving ability:	
12		0 = Standard.	0
g	g	1 = Enhanced.	
	En D57 DESE	P5.7 reset function enable:	
11	T	0 = Disable.	1
	1	1 = Enable.	
		P0 pull-up resistor enable during system reset:	
10	En_P0_Pullup	0 = Disable.	1
		1 = Enable.	
9	Must_1	Auto set 1 by the programmer	1
8	Must_0	Auto set 0 by the programmer	0
[7:0]	All_1	Auto set FFh by the programmer	FFh

6.3 Data memory space

Internal data memory is total 256 bytes, as shown in figure 6.1, are all used for SFR and iRAM, iRAM is used for stack and fast data cache , including R0-R7, bit data, byte data, idata.

External data memory is total 64KB, as shown in figure 6.1, 6KB of it are used for on-chip xRAM and xSFR, except the reserved area, others (4000h to FFFFh) are all used for external parallel bus.

6.4 Flash-ROM register

Table6.4 List of flash-ROM relative register

Name	address	Description	Reset value
ROM_DATA_H	8Fh	Flash-ROM data register high byte	xxh
ROM_DATA_L	8Eh	Flash-ROM data register low byte	xxh
ROM_DATA	8Eh	Consist of ROM_DATA_L and ROM_DATA_H	xxxxh
ROM_STATUS	86h	Flash-ROM status register(RO)	80h
ROM_CTRL	86h	Flash-ROM control register(WO)	00h
ROM_ADDR_H	85h	Flash-ROM address register high byte	xxh
ROM_ADDR_L	84h	Flash-ROM address register low byte	xxh
ROM_ADDR	84h	Consist of ROM_ADDR_L and ROM_ADDR_H	xxxxh

Bit	Name	Access	Description	Reset value
[7:0]	ROM_ADDR_H	RW	Flash-ROM address register high byte	xxh
[7:0] R	POM ADDP I	RW	Flash-ROM address register low byte, support even	xxh
	ROM_ADDR_L		address only.	

ROM_DATA - Flash-ROM data register

Bit	Name	Access	Description	Reset value
[7:0]	ROM_DATA_H	RW	Flash-ROM data register high byte	xxh
[7:0]	ROM_DATA_L	RW	Flash-ROM data register low byte	xxh

ROM_CTRL - Flash-ROM control register

Bit	Name	Access	Description	Reset value
[7:0]	ROM_CTRL	WO	Flash-ROM control register	00h

ROM_STATUS -. Flash-ROM status register

Bit	Name	Access	Description	Reset value
7	reserve	RO	Reserve	1
	LDOM ADDD		Flash-ROM address valid bit:	
6	OKOM_ADDK_	RO	0 = Invalid.	0
	UK		1 = Valid	
[5:2]	reserve	RO	Reserve	0000b
	bROM_CMD_E RR	RO	Flash-ROM command error bit:	
1			0 = Valid.	0
			1 = Unknown command	
0	LDOM CMD T		Flash-ROM operation result bit:	
		RO	0 = Success.	0
	OUT		1 = Time out	

6.5 Flash-ROM operation steps:

1. Flash-ROM erase:

(1).Get into safe mode, SAFE_MOD = 55h;SAFE_MOD = 0AAh;

(2).Enable writing by setting GLOBAL_CFG, bCODE_WE corresponds to code, and bDATA_WE to data;

(3).Set ROM_ADDR, write in 16-bit destination address, high 6-bit valid only;

(4).Set ROM_CTRL to 0A6h, execute block erase, and the program will suspend during the operation;

(5). After the operation ,the program go on, read ROM_STATUS to check the operation result, if multiple blocks need to be erased, repeat steps from (3) to(5);

(6).Get into safe mode again, SAFE_MOD = 55h;SAFE_MOD = 0AAh;

(7). Disable writing by set GLOBAL_CFG, $bCODE_WE = 0, bDATA_WE = 0$.

2. Flash-ROM write:

(1).Get into safe mode, SAFE_MOD = 55h; SAFE_MOD = 0AAh;

(2).Enable writing by setting GLOBAL_CFG, bCODE_WE corresponds to code, and bDATA_WE to data;

(3).Set ROM_ADDR, write in 16-bit destination address, high 15-bit valid only;

(4).Set ROM_DATA, write in 16-bit data, step (3) and step (4) may be exchanged;

(5).Set ROM_CTRL to 09Ah, execute writing, and the program will suspend during the operation;

(6). After the operation ,the program go on, read ROM_STATUS to check the operation result, if multiple data need to be written ,repeat steps from (3) to(6);

(7).Get into safe mode again, SAFE_MOD = 55h; SAFE_MOD = 0AAh;

(8).Set GLOBAL_CFG to disable writing, $bCODE_WE = 0, bDATA_WE = 0$.

3. Flash- ROM read:

Read data or code from the desperation address through instruction MOVC or pointer of program area. 6.6 On-board program and ISP download.

When Code_Protect = 1, code and data in CH559 flash-ROM may be read an written through synchronous serial interface by the programmer; When Code_Protect = 0, all code and data in CH559 flash-ROM are protected ,it can be erased but not read, Code_Protect will be removed after erase when power-up.

When CH559 presets Bootloader, CH559 supports downloading application code through USB or UART. Without Bootloader, application code and Bootloader may only download through specialized programmer. Reserve 5 wires between CH559 and programmer for on-board programming in the circuit.

Pin	GPIO	description	
RST	P5.7	Reset control, get into programming state when high level	
SCS	P1.4	Chip selection, high level default, low level effective	
SCK	P1.7	Clock in	
MOSI	P1.5	Data in	
MISO	P1.6	Data out	

Table 6.6.1 wires between CH559 and programmer

6.7 Global unique ID

CH559 MCU all have a global unique identification number (ID) when out of factory.ID and verification total 8 bytes, located in the special read-only register form address 20h.User can get ID number access reference example program GETID.C.

Address	ID number description
20h、21h	ID number first word, little-endian
22h、23h	ID number second word, little-endian
24h、25h	ID number third word, little-endian
26h、27h	ID number word CUSUM verification

7. Power manage, sleep and reset

7.1 External power in

CH559 works at voltage 3.3V inside, I/O input and output at 3.3V ,except pins: $P1.0 \sim P1.7$,XI,XO,RST,all pins may tolerate 5V input, built-in 5V to 3.3V LDO, support external 3.3V and 5V input, reference below:

External power voltage	VIN5 voltage: 3.3V~5V	VDD33 voltage:3.3V
2 21/	3.3V voltage input, A decoupling	External 3.3V input is used for
J.5V	capacitor not less than 0.1uF to the	internal work voltage, A decoupling
Including < 5.6 v	ground necessarily.	capacitor not less than 0.1uF to the

		ground necessarily.
		Internal voltage adapter 3.3V
517	5V voltage input, A decoupling	output and internal 3.3V working
Including > 3.6V	capacitor not less than 0.1uF to the	power input.
	ground necessarily.	A decoupling capacitor not less
		than 3.3uF to the ground necessary.

After power-up or system reset, CH559 is in running status by default, when some function modules are unused, close their clocks to reduce power dissipation. When CH559 is no need to run, set PD in register PCON to get into sleep modes, and may be waked up by USB, UART0, UART1, SPI0 or some GPIOs.

7.2 Power and sleep control register

Table 7.2.1 list of power and sleep control register

Name	Address	Description	Reset value
WDOG_COUNT	FFh	Watch counter register	00h
RESET_KEEP	FEh	Reset-keeping register	00h
WAKE_CTRL	EBh	Wake control register	00h
SLEEP_CTRL	EAh	Sleep control register	00h
PCON	87h	Power control register	10h

WDOG_COUNT - Watch counter register

Bit	Name	Access	Description	Reset value
[7:0]	WDOG_COUNT	RW	Watchdog current count value, the interrupt flag bWDOG_IF_TO will auto-set 1 when Watch counter register overflows. WDOG_COUNT overflows when count to 0FFh and turn to 00h,	OOh

RESET_KEEP - reset keeping register

Bit	Name	Access	Description	Reset value
[7:0]	RESET_KEEP	RW	Reset-keeping register, it may be modified by setting, except power-on reset may set it 0, no other resets may change it.	00h

WAKE_CTRL - Wake control register, written only in safe mode

Bit	Name	Access	Description	Reset value
	WAK PV US		USB event wake-up enable:	
7	DWAK_DI_US	RW	1 = Enable.	0
	D		0 = Disable.	
	bWAK_RXD1_ LO	RW	UART1 pin RXD1 low-level input event wake-up	
			enable:	
			0 = Disable.	0
			1 = Enable.	0
			select XA/XB differential input in iRS485	
			mode ,otherwise, select RXD1 or RXD1_ according to	

			$bIER_PIN_MOD1 = 1 \text{ or } 0$	
5	bWAK_P1_5_L O	RW	P1.5 low-level wake-up enable,0:disable	0
	WAK DI A I		P1.4 low-level wake-up enable:	
4	OWAK_F1_4_L	RW	0 = Disable.	0
	0		1 = Enable.	
	WAK DO 3 I		P0.3 low-level wake-up enable:	
3	OWAK_F0_5_L	RW	0 = Disable.	0
	0		1 = Enable.	
			Timer3 low-level input event wake-up in capture	
2	bWAK_CAP3_L	RW	mode:	0
2	0	IX VV	0 = Disable.	0
			1 = Enable.	
	WAK D3 2E 3		P3.3 edge change and P3.3 low-level wake-up enable:	
1	UWAK_I 5_2E_5	RW	0 = Disable.	0
	L		1 = Enable.	
			UART0 pin RXD0 low-level input wake-up enable:	
	WAK RYDO		0 = Disable.	
0		RW	1 = Enable.	0
	LO		select RXD0 or RXD0_ according to bUART0_PIN_	
			X = 0/1	

SEEL _ office show of the show of the same mouth	SLEEP_	CTRL-	sleep	control	register,	written	only	in safe	mode
--	--------	-------	-------	---------	-----------	---------	------	---------	------

Bit	Name	Access	Description	Reset value
7	bSLP_OFF_USB	RW	USB clock off control,1 = off	0
6	bSLP_OFF_AD C	RW	ADC clock off control,1 = off	0
5	bSLP_OFF_UA RT1	RW	UAR1 clock off control,1 = off	0
4	bSLP_OFF_P1S 1	RW	PWM1 and SPI1 clock off control,1 = off	0
3	bSLP_OFF_SPI0	RW	SPI0 clock off control,1 =off	0
2	bSLP_OFF_TM R3	RW	Timer3 clock off control,1 = off	0
1	bSLP_OFF_LED	RW	LED-CTRL clock off control,1 = off	0
0	bSLP_OFF_XR AM	RW	xRAM clock off control,1 = off	0

PCON - Power control register

Bit	Name	Access	Description	Reset value
7	SMOD	RW	Baud rate selection for UART0 mode 1/2/3 when timer1 is used to generate UART0 baud rate: 0 = slow mode. 1 = Fast mode.	0

20

6	reserve	RO	reserve	0
5	bRST_FLAG1	R0	Recent reset flag high bit	0
4	bRST_FLAG0	R0	Recent reset flag low bit	1
3	GF1	RW	General purpose flag bit 1, support manual set or clear	0
2	GF0	RW	General purpose flag bit 0, support manual set or clear software.	0
1	PD	RW	Power-down enable bit, set 1 sleep ,auto clear by wake-up hardware	0
0	reserve	RO	Reserve	0

Table7.2.2 description of recent reset flag

bRST_FLA G1	bRST_FLA G0	Description of reset flag
0	0	Software reset, source: bSW_RESET = 1 and (bBOOT_LOAD = 0 or bWDOG_EN = 1)
0	1	Power-on reset, source: pin VDD33 voltage is lower than checking voltage.
1	0	Watchdog timer overflow reset, source: bWDOG_EN = 1 and watchdog timer overflow.
1	1	External input manual reset by RST pin, source: En_P5.7_RESET = 1 and P5.7 high-level input.

7.3 Reset control

CH559 has 4 reset sources: power-on reset, external input reset, software reset, watchdog reset, and the latter three are hot reset.

7.3.1 Power-on reset

Power-on reset (POR) generate from internal voltage detecting circuit. It keeps detecting Voltage of VDD33, generate POR when the detecting voltage is lower than Vpot, auto delay Tpor to keep reset status, CH559 runs after delay.

7.3.2 External input reset

External input reset trigger from the high-level of pin RST. when En_P5.7_RESET = 1, and high-level on RST keeping time is longer than the Trsrt, reset occurs. after high-level ends, auto delay Trdl to keep reset status, CH559 runs from address 0 after delay.

7.3.3 Software reset

CH559 support internal software reset to reset the CPU and restart without outside intervention. set bSW_RESET 1 in GLOBAL_CFG to execute the software reset, auto delay Trdl to keep reset status, CH559 runs from address 0 after delay and bSW_RESET auto clear by hardware.

When bSW_RESET set 1, if bBOOT_LOAD = 0 or bWDOG_EN = 1, bRST_FLAG1/0 will indicate the software reset after reset; When bSW_RESET set 1, if bBOOT_LOAD = 1 and bWDOG_EN = 0, bRST_FLAG1/0 will keep the reset flag of last time and no new flag.

Bootloader runs first after power-on reset if ISP Bootloader downloaded, switch to the application code through software reset based on requirement. this software reset will clear bRST_FLAG1/0 0, no

change of bRST_FLAG1/0, so bRST_FLAG1/0 still indicates power-on reset status after switching to application code.

7.3.4 Watchdog reset

Watchdog reset occurs when watchdog timer overflows. Watch-dog counter is a 8-bit counter which clock frequency is Fsys/262144, WDOG_COUNT overflows when count to 0FFh and turn to 00h,

bWDOG_IF_TO set 1 when WDOG_COUNT overflows, and this flag will be auto clear 0 after WDOG_COUNT reload or get into corresponding interrupt service.

Write different initial values to WDOG_COUNT to realize different timing. write 00h to WDOG_COUNT means 5.9S, 80h means 2.8S when system clock is 12MHz.

When watchdog timer overflows and bWDOG EN = 1, watchdog reset occur. Auto delay Trdl to keep reset status, CH559 runs from address 0 after delay.

Clear WDOG_COUNT timely to avoid watchdog reset when bWDOG_EN = 1.

8. System clock

8.1 Diagram of clock

Table8.1.1 clock system and structure diagram

Select one of internal clock or external clock as source clock, then generate high frequency Fpll after frequency multiplier PLL. Generate system clock Fsys and USB module clock Fusb4x after two different frequency divisor at last system clock is provided to different modules of CH559 directly or indirectly after clock gate, to reduce power dissipation, set sleep control register to close unused modules clocks.

8.2 Register description

Table 8.2.1 list of clock control register

Name	Address	Description	Reset value
CLOCK_CFG	B3h	System clock configuration register	98h
PLL_CFG	B2h	PLL clock configuration register	D8h

System clock configuration register, written in safe mode only:

Bit	Name	Access	Description	Reset value
7	bOSC_EN_INT	RW	RWOn-chip crystal oscillator enable: 1 = Enable, 0 = On-chip crystal oscillator disable and external crystal oscillator enable	
6	bOSC_EN_XTRWExternal crystal oscillator enable: 1 = Enable, a crystal or ceramic oscillator to XI (P4.6) and XO (P4.7). 0 = Disable external oscillator.		0	
5	bWDOG_IF_TO	F_TO RO Watchdog interrupt flag: 1 = Interrupt from timer overflow. 0 = No interrupt. this bit will be auto clear 0 after WDOG_COUNT reload or get into corresponding interrupt service		0
[4:0]	MASK_SYS_C K_DIV	RW	System clock divisor factor,0000b means 10000b	11000b

PLL_CFG - PLL clock configuration register, written in safe mode only

Bit	Name	Access	Description	Reset value
[7:5]	MASK_USB_4X _DIV	RW	USB clock divisor factor,000b means 1000b	110b
[4:0]	MASK_PLL_M ULT	RW	PLL reference clock multiplier factor.	11000b

8.3 Clock configuration

CH559 uses on-chip 12 MHz clock after power-on by default. And select on-chip clock or external clock by CLOCK_CFG. Pins XI and XO may be used as GPIO when external crystal oscillator disabled, connect a oscillator between pins XI and XO when external crystal oscillator enabled, in addition, connect a oscillating capacitor between XI and GND, XO and GND; when external clock input directly, connect it to XI and keep XO suspended.

Source clock frequency Fosc = bOSC_EN_INT? 12MHz: Fxt

PLL frequency Fpll = Fosc * (PLL_CFG & MASK_PLL_MULT)

USB clock divisor factor Kusb = (PLL_CFG & MASK_USB_4X_DIV) >> 5

USB clock Fusb4x = Fpll / (Kusb? Kusb: 8)

System clock divisor factor Ksys = CLOCK_CFG & MASK_SYS_CK_DIV

System frequency Fsys = Fpll / (Ksys? Ksys: 32)

Default status after reset, Fosc = 12MHz, Fpll = 288MHz, Fusb4x = 48MHz, Fsys = 12MHz.

- (1). Get into safe mode, SAFE_MOD = 55h, SAFE_MOD = AAh;
- (2). Set bit bOSC_EN_XT 1 of CLOCK_CFG, enable crystal oscillator;
- (3). Delay several millseconds to wait oscillator work stable, 5mS~10mS general;
- (4). Get into safe mode again, SAFE_MOD = 55h, SAFE_MOD = AAh;
- (5). Clear bit bOSC_EN_XT 0 of CLOCK_CFG, switch to external crystal oscillator;
- (6). Get out safe mode; write any values into register SAFE_MOD to get out of safe mode.

Steps of system frequency modifying:

- (1).Calculate PLL_CFG and CLOCK_CFG in advance to avoid beyond term of safe mode;
- (2).Get into safe mode SAFE_MOD = 55h, SAFE_MOD = 0AAh;
- (3).Write new value to register PLL_CFG;
- (4).Write new value to register CLOCK_CFG;
- (5).Get out of safe mode, write any values into register SAFE_MOD to get out of safe mode. Note:
- (1).Recommend PLL frequency not beyond 24MHz~350MHz;
- (2).Priority-use-of lower Fsys to reduce dynamic power dissipation and get wider Working temperature;
- (3).Set Fusb4x 48MHz when USB module enabled;

(4). Change external crystal and modify system frequency are two separate operations, suggestion in two conditions:

(A).If external crystal oscillator frequency is less than 13MHz, switch to external crystal first and then modify system frequency.

(B) If external crystal oscillator frequency is more than 13MHz,Reduce PLL reference clock multiplier factor to avoid Fpll overflow first ,then switch to external crystal, and modify system frequency at last, or modify system frequency when modify register PLL_CFG.

9. Interrupt

CH559 supports maximum 14*interrupt sources, including 6*sources compatible with standard MCS51 interrupt:INT0,T0,INT1,T1,UART0,,T2 and 8*extend interrupt sources: SPI0,TMR3,USB,ADC, UART1,PWM1, WDOG, and GPIO which can be selected from 7 I/O pins.

Interrupt	Entry address	Interrupt number	Description	Default priority
			External interrupt0 (bLED_OUT_EN =	High priority
INT_NO_INT0	0x0003	0	0)or LED control card	\downarrow
			interrupt(bLED_OUT_EN = 1)	\downarrow
INT_NO_TMR0	0x000B	1	Timer0 interrupt	\downarrow
INT_NO_INT1	0x0013	2	External interrupt1	\downarrow
INT_NO_TMR1	0x001B	3	Timer1 interrupt	\downarrow
INT_NO_UART	0x0023	4	IIARTO interrupt	Ļ
0	0X0025	-		\downarrow

9.1 Register description

Table 9.1.1 List of Interrupt vector

INT_NO_TMR2	0x002B	5	Timer2 interrupt	\downarrow
INT_NO_SPI0	0x0033	6	SPI0 interrupt	Ļ
INT_NO_TMR3	0x003B	7	Timer3 interrupt	\downarrow
INT_NO_USB	0x0043	8	USB interrupt	\downarrow
INT_NO_ADC	0x004B	9	ADC interrupt	Ļ
INT_NO_UART 1	0x0053	10	UART1 interrupt	↓ Low priority
INT_NO_PWM1	0x005B	11	PWM1 interrupt	
INT_NO_GPIO	0x0063	12	GPIO interrupt	
INT_NO_WDO G	0x006B	13	Watchdog timer interrupt	

Table 9.1.2 List of interrupt registers

Name	Address	Description	Reset value
IP_EX	E9h	Extend interrupt priority register	00h
IE_EX	E8h	Extend interrupt enable register	00h
GPIO_IE	CFh	GPIO interrupt enable register	00h
IP	B8h	Interrupt priority control register	00h
IE	A8h	Interrupt enable register	00h

IE - Interrupt enable register

Bit	Name	Access	Description	Reset value
			Global interrupt enable control bit:	
7	EA	RW	$1 =$ Interrupt is enabled when $E_DIS = 0$.	0
			0 = All interrupt requests are disabled	
			Global interrupt disable control bit:	
			1 = All interrupt requests are disabled	
6	E_DIS	RW	0 = Interrupt is enabled when EA =1.	0
			Usually ,this bit is used for disabling interrupt	
			temporarily during flash-ROM operation	
			Timer2 interrupt enable bit :	
5	ET2	RW	1 = T2 interrupt is enabled	0
			0 = T2 interrupt is disabled	
			UART0 interrupt enable bit:	
4	ES	RW	1 = UART0 interrupt is enabled	0
			0 = UART0 interrupt is disabled	
			Timer1 interrupt enable bit:	
3	ET1	RW	1 = T1 interrupt is enabled	0
			0 = T1 interrupt is disabled	
			External interrupt1 enable bit:	
2	EX1	RW	1 = INT1 interrupt is enabled	0
			0 = INT1 interrupt is disabled	
1	ET0	DW	Timer0 interrupt enable bit:	0
	EIU	ĸw	1 = T0 interrupt is enabled	0

25

			0 = T0 interrupt is disabled	
0	EX0	RW	External interrupt 0 and LED control card interrupt enable bit: 1 = INTO/LED interrupt(selected by BLED_OUT_EN) is enabled 0 = INTO/LED interrupt is disabled	0

$\ensuremath{\text{IE}_\text{EX}}\xspace$ - External interrupt enable register

Bit	Name	Access	Description	Reset value
			Watchdog timer interrupt enable bit:	
7	IE_WDOG	RW	1 = WDOG interrupt is enabled.	0
			0 = WDOG interrupt is disabled	
			GPIO interrupt enable bit:	
6	IE_GPIO	RW	1 = GPIO interrupt is enabled.	0
			0 = GPIO interrupt is disabled	
			PWM1 interrupt enable bit:	
5	IE_PWM1	RW	1 = PWM1 interrupt is enabled.	0
			0 = PWM1 interrupt is disabled	
			UART1 interrupt enable bit:	
4	IE_UART1	RW	1 = UART1 interrupt is enabled.	0
			0 = UART1 interrupt is disabled	
			ADC interrupt enable bit:	
3	IE_ADC	RW	1 = ADC interrupt is enabled.	0
			0 = ADC interrupt is disabled	
			USB interrupt enable bit:	
2	IE_USB	RW	1 = USB interrupt is enabled.	0
			0 = USB interrupt is disabled	
			Timer3 interrupt enable bit:	
1	IE_TMR3	RW	1 = Timer3 interrupt is enabled.	0
			0 = Timer3 interrupt is disabled	
			SPI0 interrupt enable bit:	
0	IE_SPI0	RW	1 = SPI0 interrupt is enabled.	0
			0 = SPI0 interrupt is disabled	

OI IO IL = OI IO Interrupt chapter register	GPIO	IE -	GPIO	interrupt	enable	register
---	------	------	------	-----------	--------	----------

Bit	Name	Access	Description	Reset value
7	bIE_IO_EDGE	RW	GPIO edge interrupt mode enable bit: 0 = Level interrupt mode, bIO_INT_AC = 1 and interrupt will be requested constantly if there is a valid GPIO input level; otherwise, bIO_INT_AC = 0 and no interrupt request occurs with invalid GPIO input	0
			level. 1 = Edge interrupt mode, there are interrupt flag PIO INIT. A CT and interrupt reserved with curlid CDIO	
			BIO_INT_ACT and interrupt request with valid GPIO	

			input edge, BIO_INT_ACT cannot be software	
			cleared ,but it is automatically cleared when reset or	
			interrupt program is running in level interrupt mode	
			1 = UART1 RX PIN interrupt is enabled (valid while	
			low level in level mode or falling edge in edge mode).	
6	HE PYD1 IO	DW	0 = UART1 RX PIN interrupt is disabled.	0
0	UIL_KAD1_LO	IX VV	In IRS485 mode ,XA/XB differential input is selected;	0
			In non-IRS485 mode ,select RXD1(bIER_PIN_MOD-	
			$1 = 1$) or RXD1_ (bIER_PIN_MOD1 = 0)pin	
			1 = P5.5 interrupt is enabled (valid with high level in	
5	bIE_P5_5_HI	RW	level mode or rising edge in edge mode).	0
			0 = P5.5 interrupt is disabled	
			1 = P1.4 interrupt is enabled (valid with low level in	
4	bIE_P1_4_LO	RW	level mode or falling edge in edge mode).	0
			0 = P1.4 interrupt is disabled	
			1 = P0.3 interrupt is enabled (valid with low level in	
3	bIE_P0_3_LO	RW	level mode or falling edge in edge mode).	0
			0 = P0.3 interrupt is disabled	
			1 = P5.7 interrupt is enabled (valid with high level in	
2	bIE_P5_7_HI	RW	level mode or rising edge in edge mode).	0
			0 = P5.7interrupt is disabled	
			1 = P4.1 interrupt is enabled (valid with low level in	
1	bIE_P4_1_LO	RW	level mode or falling edge in edge mode).	0
			0 = P4.1 interrupt is disabled	
			1 = UART0 RX interrupt is enabled (valid with low	
			level in level mode or falling edge in edge mode).	
0	bIE_RXD0_LO	RW	0 = P4.1 interrupt is disabled	0
			select RXD0(bUART0_PIN_X = 0) or	
			$RXD0_{(bUAR T0_P IN_X = 1)}$	

IP - Interrupt priority register

Bit	Name	Access	Description	Reset value
7	PH_FLAG	RO	High priority interrupt running flag	0
6	PL_FLAG	RO	Low priority interrupt running flag	0
5	PT2	RW	Timer2 interrupt priority control bit	0
4	PS	RW	UART0 interrupt priority control bit	0
3	PT1	RW	Timer1 interrupt priority control bit	0
2	PX1	RW	External interrupt1 priority control bit	0
1	PT0	RW	Timer0 interrupt priority control bit	0
0	PX0	RW	External interrupt1 and LED control card interrupt priority control bit	0

IP_EX - Extend interrupt priority control register

Bit	Name	Access	Description	Reset value
-----	------	--------	-------------	-------------

			Current interrupt nesting level flag bit	
7	bIP_LEVEL	RO	0 = there is no interrupt or dual interrupt nesting.	0
			1 = single interrupt nesting.	
6	bIP_GPIO	RW	GPIO interrupt priority control bit	
5	bIP_PWM1	RW	PWM1 interrupt priority control bit	0
4	bIP_UART1	RW	UART1 interrupt priority control bit	0
3	bIP_ADC	RW	ADC interrupt priority control bit	0
2	bIP_USB	RW	USB interrupt priority control bit	0
1	bIP_TMR3	RW	Timer3 interrupt priority control bit	0
0	bIP_SPI0	RW	SPI0 interrupt priority control bit	0

IP and IP_EX register is used for interrupt priority setting, the corresponding interrupt source will be high(low) priority if this bit is 1(0), there is default priority order(refer to table 9.1.1) for interrupt sources in the same level, the current interrupt priority is shown by PH_FALG combined with PL_FLAG.

PH_FLAG	PL_FLAG	Current interrupt priority
0	0	No interrupt at present
0	1	Low priority interrupt is running at present
1	0	High priority interrupt is running at present
1	1	Unexpected event ,unknown error

Tab	le	9.1	1.3	С	urrent	int	errup	ot p	oriori	ity	inst	ruct	ion
-----	----	-----	-----	---	--------	-----	-------	------	--------	-----	------	------	-----

10. I/O port

10.1 GPIO brief introduction

CH559 provides maximum 45I/O pins; some of them can be reused. P0-p3 input and output, P4 output can be addressing by bit

The pins are general I/O port state if not set reused; all I/O ports have real "read-change-write" function and support SETB or CLR command to change the direction and level of pins while they are used as general digital I/O pins

10.2 GPIO register

All registers and bits in this section are generally expressed: small write "n" (n = 0, 1, 2, 3) to express the number of ports, small write "x"(x = 0, 1, 2, 3) to express the number of bits,

Name	Address	Description	Reset value
PO	80h	P0 input/output register	FFh
P0_DIR	C4h	P0 direction control register	00h
P0_PU	C5h	P0 pull-up enable register	00h/FFh
P1	90h	P1 input/output register	FFh
P1_IE	B9h	P1 input enable register	FFh
P1_DIR	BAh	P1 direction control register	00h
P1_PU	BBh	P1 pull-up enable register	FFh
P2	A0h	P2 input/output register	FFh
P2_DIR	BCh	P2 direction control register	00h

Table 10.2.1 List of GPIO register

P2_PU	BDh	P2 pull-up enable register	FFh
Р3	B0h	P3 input/output register	FFh
P3_DIR	BEh	P3 direction control register	00h
P3_PU	BFh	P3 pull-up enable register	FFh
P4_OUT	C0h	P4 output register	00h
P4_IN	C1h	P4 input register(read-only)	FFh
P4_DIR	C2h	P4 direction control register	00h
P4_PU	C3h	P4 pull-up enable register	FFh
P4_CFG	C7h	P4 configuration register	00h
P5_IN	C7h	P5 input register(read-only)	00h
PIN_FUNC	CEh	Pin function select register	00h
PORT_CFG	C6h	Port configuration register	0Fh
XBUS_SPEED	FDh	Bus speed configuration register	FFh
XBUS_AUX	A2h	Bus auxiliary configuration register	00h

PORT_CFG - Port configuration register

Bit	Name	Access	Description	Reset value
[7:4]	bPn_DRV	RW	Port Pn output driver ability select: 0 = Driver current is 5mA level. 1 = Driver current is 20mA level for P0/P1/P2,10mA for P1	0000Ъ
[3:0]	bPn_OC	RW	Port Pn open drain output enable: 0 = Push-pull output. 1 = Open-drain output	1111b

Pn - Port pn input output register

Bit	Name	Access	Description	Reset value
[7:0]	Pn.0~Pn.7	RW	Pn.x pins state input and data output bit ,support addressing by bit	FFh

Pn_DIR - Port pn direction control register

Bit	Name	Access	Description	Reset value
[7:0]	Pn_DIR	RW	Pn.x pins direction setting	00h

P0_PU - P0 pull-up enable register and Pn_PU - port pn pull-up enable register, n = 1/2/3

Bit	Name	Access	Description	Reset value
[7:0]		RW	P0.x pins pull-up resistor enable(when En_P0 Pullup = 0)	00h
[7:0]	P0_P0		P0.x pins pull-up resistor enable(when En_P0 Pullup = 1)	FFh
[7:0]	Pn_PU	RW	Pn.x pins pull-up resistor enable: 0 = pull-up disabled. 1 = pull-up enabled	FFh

		1401	e 10.2.2 Fort configuration register combination
bPn_OC	Pn_DI R	Pn_PU	Description of working mode
0	0	0	High-impedance input mode and there is no pull-up resistor of pin
0	0	1	Pull-up input mode, pins with pull-up resistor
0	1	X	Push-pull output mode with symmetry driving ability ,a port can output or absorb large current in this mode
1	0	0	High-impedance input weak standard bi-directional mode with open drain output, there is no pull-up resistor of pin
1	1	0	High-impedance input standard bi-directional mode, there is no pull-up resistor of pin, it will automatically generate 2 clock period of high level to accelerate conversion when output transfer from low level to high level
1	0	1	Weak standard bi-direction mode (as 8051)with pull-up resistor of pin, open drain output, input function is also supported
1	1	1	Standard bi-direction mode (standard 8051) with pull-up resistor of pin, open drain output, input function is also supported. it will automatically generate 2 clock period of high level to accelerate conversion when output transfer from low level to high level

Port pn configuration is realized by bPn_OC (in PORT_CFG) ,Pn_DIR and Pn_PU, details as follows: Table 10.2.2 Port configuration register combination

Ports P0-P3 support pure input, push-pull output and standard bi-direction mode, P4 supports pure input or push-pull output mode. There are controllable internal pull-up resistor attached to VDD33 and protection diode attached to GND for all pins

Picture 10.2.1 shows pins p1.x of P1, this picture is also suitable for ports P0, P2, P3 without P1_IE AIN and ADC_CHANN

Picture 10.2.1 equivalent schematic diagram of I/O pins

PI_IE - PI input enable regist	ole register
--------------------------------	--------------

Bit	Name	Access	Description	Reset value
[7:0]	P1_IE	RW	Pin P1.x input enable: 0 = Enable ADC analog input and disable digital input.	FFh

	1 = Enable digital input.	

10.3 P4

P4_OUT - P4 output register

Bit	Name	Access	Description	Reset value
[7:0]	P4_OUT.0~ P4_OUT.7	RW	Pin P4.x data output bit , support addressing by bit	00h

P4_IN - P4 input register

Bit	Name	Access	Description	Reset value
[7:0]	P4_IN	RO	Pin P4.x state input bit	FFh

P4_PU - P4 pull-up enable register

Bit	Name	Access	Description	Reset value
			Pin P4.x pull-up resistor enable bit:	
[7:0]	P4_PU	RW	$P4_PU = 0$, disable pull-up.	FFh
			P4_pu = 1,enable pull-up	

P4_DIR - P4 direction control register

Bit	Name	Access	Description	Reset value
			Pin P4.x direction setting:	
[7:0]	P4_DIR	RW	$P4_DIR = 0$, input direction.	00h
			P4_DIR = 1,output direction	

P5_IN - P4 configuration register and P5 input register

Bit	Name	Access	Description	Reset value
7	P5.7	R0	Pin P5.7 state input bit	0
			GPIO interrupt request activation state :	
			When $bIE_IO_EDGE = 0$:	
			bIO_INT_ACT = 1, there is valid gpio input level and	0
			interrupt occurred.	
			bIO_INT_ACT = 0, invalid input level.	
6	bIO_INT_ACT	RO	When bIE_IO_EDGE = 1, it is used as edge interrupt	
			flag	
			bIO_INT_ACT = 1, a valid edge is detected, it cannot	
			be software cleared and only be cleared automatically	
			when reset or interrupt program is running in level	
			interrupt mode	
5	P5.5	DO	Pin P5.5 state input bit, controllable pull-down resistor	0
5		K0	inside	0
4	P5.4	DO	Pin P5.4 state input bit, controllable pull-down resistor	0
4		K0	inside	U
2		DW	SPI0 SCS/SCK mapping enable:	0
- 3	DSPIU_PIN_X	ĸw	0 = Enable p1.4/p1.7.	U

31

			1 = Enable p4.6/p4.7.	
			P4 output ability select:	
2	bP4_DRV	RW	0 = Driving current is 5ma level.	0
			1 = Driving current is 20ma level.	
1	P5.1	D0	Pin P5.1 state input bit, controllable pull-down resistor	0
1		K0	inside	0
0	P5.0	D()	Pin P5.0 state input bit, controllable pull-down resistor	0
0		KU	inside	U

10.4 GPIO reuse and mapping

Some of I/O pins of CH559 are reusable and are general I/O pins when powered, they are set corresponding pins if used as different function modules.

Bit	Name	Access	Description	Reset value	
			Pin PWM1/PWM2 mapping enable bit:		
7	bPWM1_PIN_X	RW	0 = PWM1/2 enable p2.4/p2.5.	0	
			1 = PWM1/2 enable p4.3/p4.5.		
			Pin PWM3/CAP3 mapping enable bit:		
6	bTMR3_PIN_X	RW	0 = PWM3/CAP3 enable P1.2.	0	
			1 = PWM3/CAP3 enable p4.2.		
			Pin T2EX/CAP2 mapping enable bit:		
5	bT2EX_PIN_X	RW	0 = T2EX/CAP2 enable P1.1.	0	
			1 = T2EX/CAP2 enable P2.5.		
			Pin UART0 mapping enable bit:		
4	bUART0_PIN_X	RW	0 = RXD0/TXD0 enable P3.0/P3.1.	0	
			1 = RXD0/TXD0 enable P3.0/P3.1.		
			External XBUS function enable bit:		
2	bXBUS_EN	RW	0 = close external bus.	0	
3			1 = P0 used as 8-bit data bus and P3.6/P3.7 used as		
			read/write select during bus access		
			External XBUS chip selection output enable bit:		
	bXBUS_CS_OE		0 = disable chip selection output, and it can be	0	
2		RW	decoded by external circuit.		
Z			1 = P3.4 used as output of CS0(XSC0 is 0,active		
			low) ,bus address A15 is inverted and export to P3.3		
			when ALE is disabled(CS is 1, active low)		
			External XBUS address high 8 bits output enable bit:		
1	LYDUS ALL OF	DW	0 = output is disabled.	0	
1	UADUS_AH_OE	RW	1 = P2 outputs bus address high 8 bits during	U	
			MOVX_@DPTR command access to external bus		
			External XBUS address low 8 bits output enable bit:		
0	AND AL OF	RW	0 = reusable address mode, it outputs address low 8	0	
0	UADUS_AL_UE	17.44	bits or data according to demand when access to	U	
				external bus, latched by external circuit controlled by	

PIN_FUNC - Function pins select register

	ALE	
	1 = direct address mode, it outputs address low 8 bits	
	A0-A7 by P4.0-P4.5,P3.5 and P2.7	

Table 10.4.1 List of GPIO pins reuse function

GPIO	Other function: left-to-right priority
P0[0]	AD0,UDTR/bUDTR,P0.0
P0[1]	AD1,URTS/bURTS,P0.1
P0[2]	AD2,RXD_/bRXD_,P0.2
P0[3]	AD3,TXD_/bTXD_,P0.3
P0[4]	AD4,UCTS/bUCTS,P0.4
P0[5]	AD5,UDSR/bUDSR,P0.5
P0[6]	AD6,URI/bURI,P0.6
P0[7]	AD7,UDCD/bUDCD,P0.7
P1[0]	AIN0,T2/bT2,CAP1/bCAP1,P1.0
P1[1]	AIN1,T2EX/bT2EX,CAP2/bCAP2,P1.1
P1[2]	AIN2,PWM3/bPWM3,CAP3/bCAP3,P1.2
P1[3]	AIN3,P1.3
P1[4]	AIN4,SCS/bSCS,P1.4
P1[5]	AIN5,MOSI/bMOSI,P1.5
P1[6]	AIN6,MISO/bMISO,P1.6
P1[7]	AIN7,SCK/bSCK,P1.7
P2[0]	A8,P2.0
P2[1]	MOSI1/bMOSI1,A9,P2.1
P2[2]	MISO1/bMISO1,A10,P2.2
P2[3]	SCK1/bSCK1,A11,P2.3
P2[4]	PWM1/bPWM1,A12,P2.4
P2[5]	TNOW/bTNOW,PWM2/bPWM2,A13,T2EX_/bT2EX_,CAP2_/bCAP2_,P2.5
P2[6]	RXD1/bRXD1,A14,P2.6
P2[7]	TXD1/bTXD1,DA7/bDA7,A15,P2.7
P3[0]	RXD/bRXD,P3.0
P3[1]	TXD/bTXD,P3.1
P3[2]	LED0/bLED0,INT0/bINT0,P3.2
P3[3]	LED1/bLED1,!A15,INT1/bINT1,P3.3
P3[4]	LEDC/bLEDC,XCS0/bXCS0,T0/bT0,P3.4
P3[5]	DA6/bDA6,T1/bT1,P3.5
P3[6]	WR/bWR,P3.6
P3[7]	RD/bRD,P3.7
P4[0]	LED2/bLED2,A0,RXD1_/bRXD1_,P4.0
P4[1]	A1,P4.1
P4[2]	PWM3_/bPWM3_,CAP3_/bCAP3_,A2,P4.2
P4[3]	PWM1_/bPWM1_,A3,P4.3
P4[4]	LED3/bLED3,TNOW_/bTNOW_,TXD1_/bTXD1_,A4,P4.4

P4[5]

P4[6]

P4[7]

P5[0]

P5[1]DP/bDP,P5.1P5[4]HM/bHM,ALE,XB,P5.4P5[5]HP/bHP,!A15,XA,P5.5P5[7]RST/bRST,P5.7The left-to-right priority shown in table above is the priority of some modules competing for using

GPIO. For example, P2 has been set output bus address high 8 bits but only A8-A10 address is used actually. then P2.4/P2.5 can be used as PWM1/PWM2 in higher priority, P2.6 can be used as RXD1, P2.7 can be used as TXD1 or DA7 in higher priority, so the waste of P2.4 and P2.7 can be avoided when A12-A15 address is unused.

11. External XBUS

11.1 External bus register XBUS_AUX - External bus auxiliary setting register

Bit	Name	Access	Description	Reset value	
7 HIAPTO TY		PO	UART0 sending state instruction:	0	
/	UUARIO_IA	KU	1 = it is in sending procedure	Ŭ	
6	LUADTO DY	PO	UART0 receiving state instruction:	0	
0	UUARIU_KA	K0	1 = it is in receiving procedure	0	
5	bSAFE_MOD_A	D0	Safe mode state instruction:	0	
5	СТ	K0	1 = it is in safe mode	0	
			Pin ALE clock output enable:		
		RW	1 = ALE outputs system frequency divided by 12	0	
4	bALE_CLK_EN		without XBUS operation, that is Fsys/12		
4			0 = clock signal is disabled, it only outputs address		
			low 8 bits latch signal while access to external bus to		
			reduce EMI		
2	CE2	DW	General flag bit2: it can be defined by user and	0	
5 GF2		ĸw	software cleared or set	0	
2	bDPTR_AUTO_		Enable DPTR add by 1 automatically after	0	
² INC		RW	MOVX_@DPTR command	0	
1	reserve	RO	Reserve	0	
		RW	Dual DPTR data pointer select bit:		
0	DPS		DPS = 0 select $DPTR0$.	0	
			DPS = 1 select DPTR1		

XBUS_S	PEED -	ternal	bus	speed	configu	ration	register
--------	--------	--------	-----	-------	---------	--------	----------

Bit	Name	Access	Description	Reset value
7	bXBUS1_SETU P	RW	XBUS1 building time selection: 0 = 2 clock period. 1 = 3 clock period	1

6	LYRUS1 HOLD	DW	0 = 1 clock period.	1
U UABUSI_HOLD		KW	1 = 2 clock period	1
5	bXBUS1_WIDT	RW	XBUS1 bus pulse width high bit:	1
	H1			
4	bXBUS1_WIDT	DW		1
4	H0	ĸw	XBUSI bus pulse width low bit	1
	LVDUCO CETU		XBUS0 hold time selection:	
3	DABUSU_SEIU	RW	0 = 1 clock period.	1
	P		1 = 2 clock period	
			XBUS0 hold time selection:	
2	bXBUS0_HOLD	RW	0 = 1 clock period.	1
			1 = 2 clock period	
1	bXBUS0_WIDT	DW	VDUSO bus pulse width high hit	1
1	H1	IX VV	Aboso bus puise width high bit	1
0	bXBUS0_WIDT	DW	VDUSO bug pulse width low bit	1
0	H0	KW	ABUSO bus pulse width low bit	1

 $bXBUSn_WIDTH1$ and $bXBUSn_WIDTH0$ (n = 0 or 1), used for selecting valid pulse width of bus CS n writing and reading:

00 = 2 clock period

01 = 4 clock period

10 = 8 clock period

11 = 16 clock period

11.2 External bus pins

Table 11.2.1 list of external bus pins

GPIO	Direct address mode pin	Reuse address mode pin	Function description		
P3.7	RD	RD	External bus read signal output pin, valid with low level, sample output while rising edge		
P3.6	WR	WR	External bus write signal output pin, valid with low level		
	D0~D7	D0~D7	8 bit bidirectional data bus		
P0.0~ P0.7 A		A0~A7	Reused as address low 8 bits A[0-7] output, latched by external circuit controlled by ALE		
P4.0~	10	unusad	Bus direct address A[0-5] output pin,P4_DIR must be set		
P4.5	$A0^{\prime} \sim A3$	unused	output in addition		
P3.5	A6	unused	Bus direct address A6 output pin		
D2 7	A7		Bus direct address A7 output pin		
r 2.7		A15	Bus address A15 output pin		
P2.0~	$\Lambda 8 \sim \Lambda 14$	$\Lambda 8 \sim \Lambda 14$	Bus address A[8:14] output pip		
P2.6	A0 A14	Ao Al4	Bus audress A[8:14] Output pill		
D3 /	XCS0	VCS0	CS0 output pin, address ranges from 4000h to 7FFFh,valid		
13.4	ACOU	AC50	with low level		
D3 3	14.15	1415	Bus address A15 invert output pin, equivalent to CS 1		
13.5	:A15	:A15	output, address range from 8000h to FFFFh, valid with low		

			level, only in ALE disable mode
			Bus address A15 invert output pin, equivalent to CS 1
P5.5	!A15	!A15	output, address range from 8000h to FFFFh, valid with low
			level, only in ALE disable mode
		ALE	address low 8 bits latch control reuse output pin, valid
P5.4			with high level
			System frequency divided by 12 output pin, duty cycle is
	ALE		1/12

Some of the pins above that is not used in external bus mode can be used for other modules according to GPIO reuse priority, and pins not used from P4.0 to P4.5 can also be set P4_DIR hold input mode.

When bXBUS_CS_OE=1 ,Bus address A15 invert signal will select output pin according to ALE output mode,!A15 will select P5.5 to output when ALE output is enabled, select P3.3 to output when ALE output is disabled.ALE output state is decided by bUH1_DISABLE.bXBUS_EN.bXBUS_AL_OE combined with bALE_CLK_EN.

bUH1_DISAB LE	bXBUS_ EN	bXBUS_AL_ OE	bALE_CLK_ EN	P5.4 description
0	Х	Х	Х	Disable ALE output ,used as HM in first order(P5.5 used as HP)
1	0	Х	0	Disable ALE output ,used as HM acquiescently(P5.5 used as HP)
1	0	Х	1	ALE only output system clock signal divided by12
1	1	1	0	Disable ALE output ,used as HM acquiescently(P5.5 used as HP)
1	1	1	1	ALE only output system clock signal divided by12
1	1	0	0	ALE only output address latch signal low 8 bits
1	1	0	1	ALE outputs address latch signal low 8 bits, outputs system clock signal divided by 12 during idle time

Table 11.2.2 P5.4 pin reuse ALE output state table

12.Timer

12.1 Timer0/1

Timer0 and Timer1 are two 16-bit timer and counter, configure Timer0 and timer1 by register TCON and TMOD,TCON is used for start-up control, overflow interrupt and external interrupt control of T0 and T1.each timer is 16-bit consist of two 8-bit unit, high byte of timer0 is THO, low byte is TL0. High byte of timer1 is TH1, low byte is TL1. Timer1 may also be used for UART0 baud rate generator.

Name	Address	Description	Reset value
TH1	8Dh	High byte of Timer1 count	xxh
TH0	8Ch	High byte of Timer0 count	xxh
TL1	8Bh	Low byte of Timer1 count	xxh
TL0	8Ah	Low byte of Timer0 count	xxh

Table 12.1.1 list of Timero/1 relative register
TMOD	89h	Timer0/1 mode register	00h
TCON	88h	Timer0/1 control register	00h

TCON - Timer/counter/0/1 control register

Bit	Name	Access	Description	Reset value
7	TF1	RW	Timer1 overflows interrupt flag ,auto clear 0 after entry of Timer1 interrupt service	0
6	TR1	RW	Timer1 start/stop bit, set 1 start, set or clear by software	0
5	TF0	RW	Timer0 overflows interrupt flag, auto cleared when MCU enter interrupt routine	0
4	TR0	RW	Timer0 start/stop bit, set 1 start, set or clear by software	0
3	IE1	RW	INT1 interrupt flag, auto cleared when MCU enter interrupt routine	0
2	IT1	RW	INT1 interrupt type: 0=low level action, 1=falling edge action	0
1	IEO	RW	INT0 interrupt flag, auto cleared when MCU enter interrupt routine	0
0	ITO	RW	INT0 interrupt type: 0=low level action, 1=falling edge action	0

TMOD -	Timer/counter/0/1	mode register:
--------	-------------------	----------------

Bit	Na	me	Access	Description	Reset value	
7	bT1_GATE		RW	Gate control of timer1: 0 = timer1 run enable while TR1=1. 1 = timer1 run enable while P3.3 (INT1) pin is high	0	
6	bT1_CT RW		RW	and I R1=1Counter or timer mode selection for timer1:0 = timer, use internal clock.1 = counter, use P3.5 (T1) pin falling edge as clock	0	
5	bT1	_M1	RW Timer1 mode high bit		0	
4	bT1	_M0	RW Timer1 mode low bit		0	
3	bT0_0	bT0_GATE RW		Gate control of timer0: 0 = timer0 run enable while TR0=1. 1 = timer0 run enable while P3.2 (INT0) pin is high and TR0=1	0	
2	bT0 <u></u>	bT0_CT RW		Counter or timer mode selection for timer0: 0 = timer, use internal clock, 1 = counter, use P3.4 (T0) pin falling edge as clock	0	
1	bT0	_M1	A1 RW Timer0 mode high bit		0	
0	bT0	0_M0 RW Timer0 mode low bit		0		
	Table 12.1.2 list of Timern working mode(n=0,1)					
bTn_M bTn_M Timern working mode						

37

1	0	
0	0	13-bit timer or counter by cascaded TH0 and lower 5 bits of TL0, the upper 3 bits of TL0
0	0	are ignored
0	1	Mode 1, 16-bit timer or counter by cascaded TH0 and TL0
1	0	10: mode 2, TL0 operates as 8-bit timer or counter, and TH0 provide initial value for TL0
1 0		auto-reload
1 1	1	Mode 3, TL0 is 8-bit timer or counter controlled by standard timer0 bits, TH0 is 8-bit timer
	1	using TF1 and controlled by TR1, timer1 run enable if it is not mode 3

TLn - Timern low byte (n=0.1)

Bit	Name	Access	Description	Reset value
[7:0]	TLn	RW	Timern low byte	xxh

Timern high byte(TLn)(n=0.1)

Bit	Name	Access	Description	Reset value
[7:0]	THn	RW	Timern high byte	xxh

12.2 Timer2

Timer2 is a 16-bit auto-reload timer and counter, configured by register T2CON and T2MOD, high byte of Timer2 is TH2, and low is TL2. Timer2 may be used for baud rate generator for UART0, and provide 2 level capture which capture value stored in register RCAP2 and T2CAP1.

Table 12.2.1 Timer2 relative register

Name	Address	Description	Reset value
TH2	CDh	Timer2 count high byte	00h
TL2	CCh	Timer2 count low byte	00h
T2COUNT	CCh	Consist of TL2 and TH2	0000h
T2CAP1H	CDh	Timer2 capture1 value high byte(Read-only)	xxh
T2CAP1L	CCh	Timer2 capture1 data low byte(Read-only)	xxh
T2CAP1	CCh	Consist of T2CAP1L and T2CAP1H	xxxxh
RCAP2H	CBh	High byte of reload & capture value	00h
RCAP2L	CAh	Low byte of reload & capture value	00h
RCAP2	CAh	Consist of RCAP2L and RCAP2H	0000h
T2MOD	C9h	Timer2 mode register	00h
T2CON	C8h	Timer2 control register	00h

T2CON -	Timer/counter2	control	register

Bit	Name	Access	Description	Reset value
			Timer2 overflow & interrupt flag, need software clear,	
7	TF2	RW	the flag will not be set when either $RCLK = 1$ or	0
			TCLK = 1	
7	CADIE	DW	Timer2 capture 1 interrupt flag, set by T2 edge trigger	0
/ CAFIF	CAFIF	Г KW	if bT2_CAP1_EN = 1, need software clear.	0
6	EXF2	RW	Timer2 external trigger flag, set by T2EX edge trigger	0

			if $EXEN2 = 1$, need software clear	
			Select UART0 receiving clock:	
5	RCLK	RW	0 = timer1 overflow pulse,	0
			1 = timer2 overflow pulse	
			Select UART0 transmittal clock:	
4	TCLK	RW	0 = timer1 overflow pulse,	0
			1 = timer2 overflow pulse	
			Enable T2EX trigger function:	
3	EXEN2	RW	0 = ignore T2EX,	0
			1 = enable trigger reload or capture by T2EX edge	
2	TR2	RW	Timer2 run enable, 1= run, set or clear by software	0
			Timer2 clock source selection:	
1	C_T2	RW	0 = timer base internal clock.	0
			1 = external edge counter base T2 falling edge	
			Timer2 function selection (force 0 if $RCLK = 1$ or	
			TCLK = 1):	
0	CP_RL2	RW	0 = timer and auto reload if count overflow or T2EX	0
			edge.	
			1 = capture by T2EX edge	

T2MOD - Timer/counter2 mode register

Bit	Name	Access		Description		Reset value	
			Fastest interna	Fastest internal clock mode for timer 0/1/2 under			
7	bTMR CLK	RW	faster clock m	ode: $0 = $ use divide	d clock, $1 = use$	0	
			original Fsys	as clock without div	viding, it has no	it has no	
			effect on sele	cting standard clock t	imer		
			Timer2 internal	clock frequency sele	ction:		
			0 = standard	clock, Fsys/12 for tin	mer mode, Fsys/4		
			for UART0 clo	ck mode.			
6	bT2_CLK	RW	1 = faster cloc	k, Fsys/4 @bTMR_0	CLK = 0 or Fsys	0	
			@bTMR_CLK	@bTMR_CLK = 1 for timer mode, Fsys/2			
			<pre>@bTMR_CLK = 0 or Fsys @bTMR_CLK = 1 for</pre>				
			UART0 clock r	node			
		K RW	Timer1 internal	clock frequency sele	ction:		
5			0 = standard clock, Fsys/12,		0		
5	b11_CLK		1 = faster clock, Fsys/4 if bTMR_CLK = 0 or Fsys if		0		
			bTMR_CLK =	1			
			Timer0 internal	clock frequency sele	ction:		
4		DW	0 = standard clock, Fsys/12,		0		
4	010_CLK	K VV	1 = faster clock	k, Fsys/4 if bTMR_C	LK = 0 or Fsys if	0	
			bTMR_CLK = 1				
			Timer2	T2_CAP_M1 &	bT2_CAP_M0:		
3	bT2_CAP_M1	RW	capture mode	timer2 capture point	t selection:	0	
			high bit	x0: from falling edg	e to falling edge		

			Timer2	01: from any edge to any edge (level	
2	bT2_CAP_M0	RW	capture mode	changing)	0
			low bit	11: from rising edge to rising edge	
		RW	Enable timer2 g	Enable timer2 generated clock output:	
1	T2OE		0 = disable output,		0
			1 = enable clock output at T2 pin, frequency = TF2/2		
			Enable T2 trigg	ger function for capture 1 of timer2 if	
0	bT2_CAP1_EN	RW	RCLK = 0 & T	$CLK = 0 \& CP_RL2 = 1 \& C_T2 = 0$	0
			& T2OE = 0		

RCAP2 - Count reload/capture1 data register

Bit	Name	Access	Description	Reset value
[7:0]	RCAP2H	RW	High byte of reload & capture value	00h
[7:0]	RCAP2L	RW	High byte of reload & capture value	00h

T2COUNT Timer2 counter, valid when $bT2_CAP1_EN = 0$

Bit	Name	Access	Description	Reset value
[7:0]	TH2	RW	High byte of timer2	00h
[7:0]	TL2	RW	High byte of timer2	00h

T2CAP1 Timer2 capture data, valid when $bT2_CAP1_EN = 0$

Bit	Name	Access	Description	Reset value
[7:0]	T2CAP1H	RO	Read-only: capture 1 value high byte for timer2	xxh
[7:0]	T2CAP1L	RO	Read-only: capture 1 value low byte for timer2	xxh

12.3 Timer3

Table 12.3.1 Timer3 relative register

Name	Address	Description	Reset value
T3_FIFO_H	AFh	FIFO high byte of Timer3	xxh
T3_FIFO_L	AEh	FIFO low byte of Timer3	xxh
T3_FIFO	AEh	Consist of T3_FIFO_L and T3_FIFO_H	xxxxh
T3_DMA_AH	ADh	DMA address high byte, automatic increasing after DMA	0xh
T3_DMA_AL	ACh	DMA address low byte, automatic increasing after DMA	xxh
T3_DMA	ACh	Consist of T3_DMA_AL and T3_DMA_AH	0xxxh
T3_DMA_CN	ABh	DMA remainder word count, automatic decreasing after DMA	00h
T3_CTRL	AAh	Timer3 control register	02h
T3_STAT	A9h	Timer3 status register	00h
T3_END_H	A7h	High byte of end value for count	xxh
T3_END_L	A6h	Low byte of end value for count	xxh
T3_END	A6h	Consist of T3_END_L and T3_END_H	xxxxh
T3_COUNT_H	A5h	Read-only: current count high byte	00h
T3_COUNT_L	A4h	Read-only: current count low byte	00h

T3_COUNT	A4h	Consist of T3_COUNT_L and T3_COUNT_H	0000h
T3_CK_SE_H	A5h	Clock divisor setting high byte	00h
T3_CK_SE_L	A4h	Clock divisor setting low byte	20h
T3_CK_SE	A4h	Consist of T3_CK_SE_L and T3_CK_SE_H	0020h
T3_SETUP	A3h	Timer3 set register	04h

T3_SETUP - Timer3 setup register

Bit	Name	Access	Description	Reset value
			1 = enable interrupt for capture mode count timeout	
7	bT3_IE_END	RW	(exceed end value) or PWM mode cycle end.	0
			0 = disable	
6	bT3_IE_FIFO_O	DW	1 = enable interrupt for FIFO overflow.	0
0	V	ĸw	0 = disable	0
	hT2 IE EIEO D		1 = enable interrupt for capture mode FIFO $> = 4$ or	
5	DIS_IE_FIFO_K	RW	PWM mode FIFO $< = 3$.	0
	EQ		0 = disable	
			1 = enable interrupt for capture mode input action or	
4	bT3_IE_ACT	RW	PWM mode trigger.	0
			0 = disable	
3	RESERVE	RO	reserve	0
2	1T2 CAD DI	DO	Read-only: current capture input level after noise	
2	b13_CAP_IN	RO	filtrating	1
1		DW	1 = force no minimum pulse width limit for capture	0
	b13_CAP_CLK	KW	input if T3_CK_SE = 1	0
0	1 TO EN OR OF	DW	1 = enable to accessing divisor setting register, else	0
U	DIJ_EN_CK_SE	RW	enable to accessing current count register	U

T3_COUNT - current count of Timer3, valid when $bT3_EN_CK_SE = 0$

Bit	Name	Access	Description	Reset value
[7:0]	T3_COUNT_H	RO	Timer3 current count high byte	00h
[7:0]	T3_COUNT_L	RO	Timer3 current count low byte	00h

T3_CK_SE - Timer3 clock divisor Register, valid when bT3_EN_CK_SE = 1

Bit	Name	Access	Description	Reset value
[7:0]	T3_CK_SE_H	RW	Clock divisor setting high byte, lower 4 bits valid only, higher 4 bits are all fixed at 0	00h
[7:0]	T3_CK_SE_L	RW	Clock divisor setting low byte	20h

T3_END - Timer3 count end register

Bit	Name	Access	Description	Reset value	
[7:0]	T3_END_H	RW	High byte of end value for count		xxh
[7:0]	T3_END_L	RW	Low byte of end value for count		xxh

T3_STAT - Timer3 status register

Bit	Name	Access	Description	Reset value
7	bT3_IF_DMA_E ND	RW	Interrupt flag for DMA completion, write 1 to clear or write T3_DMA_CN to clear	0
6	bT3_IF_FIFO_O V	RW	Interrupt flag for FIFO overflow, write 1 to clear	0
5	bT3_IF_FIFO_R EQ	RW	Interrupt flag for request FIFO data (capture mode FIFO $> = 4$ or PWM mode FIFO $< = 3$), write 1 to clear	0
4	bT3_IF_ACT	RW	Interrupt flag for capture mode input action or PWM mode trigger if bT3_IE_ACT = 1, write 1 to clear or accessing FIFO to clear	0
4	bT3_IF_END	RW	Interrupt flag for capture mode count timeout (exceed end value) or PWM mode cycle end if bT3_IE_ACT = 0, write 1 to clear	0
[3:0]	MASK_T3_FIF O_CNT	R0	Read-only: bit mask of timer3 FIFO count	0000b

T3_CTRL- Timer3 control register

Bit	Name	Access	Description	Reset value
7	TT2 CAD M1	DW	Timer3 capture mode high bit; PWM data repeat mode	0
/	/ DIS_CAP_MI	ĸw	high bit	0
6	TT2 CAD MO	DW	Timer3 capture mode low bit; PWM data repeat mode	0
0	DIS_CAP_MO	ĸw	low bit	0
			Timer3 PWM output polarity:	
5	bT3_PWM_POLAR	RW	0 = default low and high action,	0
			1 = default high and low action	
			Minimum pulse width for timer3 capture:	
5	bT3_CAP_WIDTH	RW	0 = 4 divided clocks.	0
			1 = 1 divided clock	
			DMA enable and DMA interrupt enable for timer3:	
4	bT3_DMA_EN	RW	1 = enable.	0
			0 = disable	
			Timer3 output enable:	
3	bT3_OUT_EN	RW	1 = enable.	0
			0 = disable	
			Timer3 count enable:	
2	bT3_CNT_EN	RW	1 = enable.	0
			0 = disable	
1	bT3_CLR_ALL	RW	1 = force clear FIFO and count of timer3	1
			Timer3 mode:	
0	bT3_MOD_CAP	RW	0 = timer or PWM.	0
			1 = capture	

Note: timer3 capture point selection in capture mode: bT3_CAP_M1 & bT3_CAP_M0:

- 00 = disable capture;
- 01 = trigger by any edge, capture from any edge to any edge (level changing);
- 10 = trigger by falling edge, capture from falling edge to falling edge;
- 11 = trigger by rising edge, capture from rising edge to rising edge.
- Data repeater times in PWM mode: bT3_CAP_M1 & bT3_CAP_M0:
- 00 = 1 times;
- 01 = 4 times;
- 10 = 8 times;
- 11 = 16 times

T3_DMA_CN - DMA remain count register

Bit	Name	Access	Description	Reset value
[7:0]	T3 DMA CN	PW	DMA remainder word count, support preset initial	00b
[7.0]	15_DWA_CN	K W	value, automatic decreasing after DMA	0011

T3_DMA - DMA address register

Bit	Name	Access	Description	Reset value
[7:0]	T3_DMA_AH	RW	DMA address high byte, automatic increasing after DMA, low 4-bit valid only, high 4-bit are 0, support first 4k of xRAM only	Oxh
[7:0]	T3_DMA_AL	RW	DMA address high byte, automatic increasing after DMA, high 7-bit valid only, low bit is 0;support even address only	xxh

T3_FIFO - FIFO register

Bit	Name	Access	Description	Reset value
[7:0]	T3_FIFO_H	RW	Timer3 FIFO high byte	xxh
[7:0]	T3_FIFO_L	RW	Timer3 FIFO low byte	xxh

12.4 PWM

CH559 Timer3 support 16-bit PWM and 2 8-bit PWM. Support default output setting low-level or high-level, modify duty cycle dynamically, and get the wanted after a simple RC circuit just like a low speed DAC.

PWM3 duty cycle = T3_FIFO / T3_END, support 0% to 100%, if T3_FIFO >T3_END, PWM3 duty cycle = 100%.

PWM1 duty cycle = PWM_DATA / PWM_CYCLE, support 0% to 100%, if PWM_DATA >PWM_CYCLE, PWM2 duty cycle = 100%.

PWM2 duty cycle = PWM_DATA2 / PWM_CYCLE, support 0% to 100%, if PWM_DATA2 >PWM_CYCLE, PWM2 duty cycle = 100%.

Suggestion: enable PWM output and set push-pull in application.

12.4.1 PWM1 and PWM2

Table 12.4.1 PWM1 and PWM2 relative register

	Name	Address	Description	Reset value
--	------	---------	-------------	-------------

PWM_CYCLE	9Fh	PWM cycle register	xxh
PWM_CK_SE	9Eh	PWM clock divisor register	00h
PWM_CTRL	9Dh	PWM control register	02h
PWM_DATA	9Ch	PWM1 data register	xxh
PWM_DATA2	9Bh	PWM2 data register	xxh

PWM_DATA2 - PWM2 data register

Bit	Name	Access	Description	Reset value
[7:0]	[7:0] DWM DATA2	RW	PWM data for PWM2,PWM2 duty cycle =	vyh
[7.0]	F WW_DATA2		PWM_DATA2 / PWM_CYCLE	

PWM_DATA2 - PWM2 data register

Bit	Name	Access	Description	Reset value
[7:0]	PWM_DATA	RW	PWM data for PWM1,PWM1 duty cycle = PWM_DATA / PWM_CYCLE	xxh

PWM_CTRL - PWM control register

Bit	Name	Access	Description	Reset value
7	bPWM_IE_END	RW	1 = enable interrupt for PWM mode cycle end or MFM empty buffer	0
6	bPWM2_POLA R	RW	PWM2 output polarity if bPWM_MOD_MFM = 0: 0 = default low and high action, 1 = default high and low action	0
6	bMFM_BUF_E MPTY	RO	Read-only: MFM empty buffer status if bPWM_MOD_MFM = 1	0
5	bPWM_POLAR	RW	PWM output polarity:0 = default low and high action,1 = default high and low action	0
4	bPWM_IF_END	RW	interrupt flag for cycle end, write 1 to clear or write PWM_CYCLE or load new data to clear	0
3	bPWM_OUT_E N	RW	PWM1 output enable: 1 = enable. 0 = disable	0
2	bPWM2_OUT_E N	RW	PWM2 output enable if bPWM_MOD_MFM = 0: 1 = enable. 0 = disable.	0
2	bMFM_BIT_CN T2	RO	Read-only: MFM encode bit count status if bPWM_MOD_MFM = 1: 0 = lower 4 bits, 1 = upper 4 bits	0
1	bPWM_CLR_A LL	RW	1 = force clear FIFO and count of PWM1/2	1
0	bPWM_MOD_ MFM	RW	MFM encode mode for PWM: 0 = PWM,	0

|--|

PWM_CK_SE - PWM clock divisor register

Bit	Name	Access	Description	Reset value
[7:0]	PWM_CK_SE	RW	PWM clock divisor	00h

PWM_CYCLE - PWM cycle register

Bit	Name	Access	Description	Reset value
[7:0]	PWM_CYCLE	RW	Set PWM cycle,00 means 100h	xxh

12.5 Timer

12.5.1 Timer0/1

(1).Set timer internal clock frequency by T2MOD, Timer0/1 frequency is Fsys/12 when $bTn_CLK(n = 1)$

0/1) = 0, Fsys/4 when bTMR_CLK = 0 and Fsys when bTMR_CLK = 1 if bTn_CLK = 1.

(2).Set Timer work mode by TMOD.

Mode0: 13-bit timer/counter

Figure12.5.1.1 Timer0/mode 0

Figure12.5.1.2 Timer0/1/mode 1

Mode2: auto reload 8-bit timer/counter

Figure12.5.1.3 Timer0/1/mode 2

Mode3: Timer0 is divided into 2 separate 8-bit timer/counter, and borrowed TR1 of Timer1,Timer1 stops when Timer1 get into mode 3.

Figure12.5.1.4 Timer0 mode 3

(3).Set timer/counter initial value TLn and THn(n = 0/1).

(4).Set TRn (n = 0/1)in TCON to enable or disable timer/counter, and query status through bit TFn(n = 0/1).

12.5.2 Timer2

Timer2 16-bit reload timer/counter model:

- (1).Clear bit RCLK and TCLK 0 in T2CON, select non-baud rate generator mode.
- (2).Clear C_T2 0 in T2CON to use internal clock, jump to step(3);or set 1 to use pin T2 fall-edge as count clock, skip step (3).
- (3).Set T2MOD to select Timer internal clock, Timer2 frequency is Fsys/12 when $bT2_CLK = 0$, Fsys/4 when $bTMR_CLK = 0$ and Fsys when $bTMR_CLK = 1$ if $bT2_CLK = 1$.
- (4).Clear CP_RL2 0 in T2CON, select Timer2 16-bit reload timer /counter function.
- (5).Set RCAP2L and RCAP2H as reload value when timer overflow, and TL2 and TH2 initial value, set TR2 1,and enable Timer2.
- (6).Query TF2 or Timer2 interrupt to get current timer and counter status.

Figure 12.5.1 Timer2 16-bit reloads timer and counter

Timer2 clock output mode:

Refer to 16-bit reload timer and counter mode, set T2oE 1 in T2MOD to enable pin T2 output clock of half TF2 frequency.

Timer2 UART0 baud rate generator mode:

- (1).CLEAR C_T2 0 in T2CON to enable internal clock, or set 1 to set T2 fall-edge as clock, select baud rate mode according to RCLK and TCLK in T2CON.
- (2).Set T2MOD to select Timer internal clock, Timer2 frequency is Fsys/12 when $bT2_CLK = 0$, Fsys/4 when $bTMR_CLK = 0$ and Fsys when $bTMR_CLK = 1$ if $bT2_CLK = 1$.

(3).Set RCAP2L and RCAP2H as reload value when timer overflow, set TR2 1, and enable Timer2.

Figure 12.5.2.2 Timer2 UART0 baud rate generator

Timer2 dual-channel capture mode:

- (1). Clear RCLK and TCLK 0 in T2CON to select non-buad rate generator mode.
- (2). CLEAR C_T2 0 in T2CON to enable internal clock, and jump to step (3), or set 1 to set T2 fall-edge as counter clock, and skip step(3).
- (3). Set T2MOD to select Timer internal clock, Timer2 frequency is Fsys/12 when bT2_CLK = 0, Fsys/4 when bTMR_CLK = 0 and Fsys when bTMR_CLK = 1 if bT2_CLK = 1.
- (4). Set bit $bT2_CAP_M1$ and $bT2_CAP_M0$ in T2CON to select edge capture mode.
 - bT2_CAP_M1 & bT2_CAP_M0: timer2 capture point selection:
 - x0 =from falling edge to falling edge;
 - 01 = from any edge to any edge (level changing);
 - 11 = from rising edge to rising edge.

47

- (5).SET bit CP_RL2 in T2CON to select pin T2EX capture function of Timer2.
- (6).Set TL2 and TH2 timer initial value set TR2 1 to enable Timer2.
- (7).RCAP2L and RCAP2H keep TL2 and TH2 value, set EXF2 1 and trigger interrupt after capture. The signal width of two valid edge is the difference between last time capturing of RCAP2L/RCAP2H and next.
- (8).If C_T2 = 0 in T2CON and bT2_CAP1 = 1 in T2CON, that will enable Pin T2 capture function, T2CAP1L and T2CAP1L keep TL2 and TH2 value, set CAP1F 1 and trigger interrupt after capture.

Figure 12.5.2.3 Timer2 capture mode

12.5.3 Timer3

- (1).Set bT3_EN_CK_SE 1in T3_SETUP, enable T3_CK_SE, set frequency divisor, timer3 clock is Fsys/T3_CK_SE, clear bT3_EN_CK_SE 0 after setting.
- (2). Set T3_END value or PWM cycles.
- (3). Enable T3_SETUP as required.

(4). Set control bit of T3_CTRL, select work mode, clear bT3_CLR_ALL, and set bT3_CNT_EN 1 to enable Timer3.

(5). Configure T3_DMA_AL, T3_DMA_AH, T3_DMA_CN as required, and set bT3_DMA_EN to enable DMA.

Figure 12.5.3.1 Timer3 16-bit timer/PWM/capture

Timer3 capture data format:

Timer3 may capture the width of two valid edges, and the width is shown with the counter of frequency divided and read through DMA or FIFO after or during capturing. it consists of 16 bit, high-bit is a flag and low 15-bit is width counter. After capture enable, data generate when detect valid edge or timer overflows. The first will be dropped since it is not the width between two valid edges.

(1). bT3_CAP_M1 and bT3_CAP_M0: 11

Rising edge valid, capture the width from rising-edge to rising-edge. And the width overflow if the highest bit is 1, that mean not found next rising edge after T3_END, and should be added to next width data which highest bit is 0; if the highest bit is 0, that mean the width of last rising edge. In this mode, recommend to set T3_END to detect special super wide and end signal. And the normal signal does not overflow.

For example, set T3_END 4000h, the original capture data is below:

1234h, 2345h, 0456h, C000h, C000h, 1035h, 3579h, C000h, 2468h, 0987h

After combination : 1234h, 2345h, 0456h, 9035h, 3579h, 6468h, 0987h

(2). bT3_CAP_M1 and bT3_CAP_M0: 10

Same with (1), but falling valid, capture the width from falling-edge to falling-edge.

 $(3).bT3_CAP_M1$ and $bT3_CAP_M0 = 01$

Any edge valid, capture the width from any edge to edge. If the high bit is 1, that mean the width of high-level and 0 mean the width of low–level. Low 15-bit is width counter. In this mode, set T3_END max value to avoid overflow, but not beyond 15-bit valid data.

13. Universal asynchronous receiver-transmitter

13.1 UART brief introduction

CH559 provide 2 full- duplex UART: UART0 and UART1.

UART0 is a standard MCS51 UART, receive and transmit data with SBUF. Reading for receiving, writing for transmitting.

UART1 is a enhanced UART and features below:

(1).Compatible with 16C550 and enhanced;

(2).Support5, 6, 7 or 8 bit data or 1,2 stop bit;

(3).Support odd, even, none, space, mark parity mode.

(4).Programmable baud rate, support 115200bps and up to 3Mbps.

(5).Built-in transmit and receive buffer and 8 byte FIFO, support 4 trigger level;

(6).Support MODEM: CTS, DSR, RI, DCD, DTR, RTS.

(7).Support hardware flow control signal CTS and RTS auto hand shark and speed control, compatible with TL16C550C;

(8).Support UART frame error and break detecting;

(9).Built-in SIR coding and encoding, support 2400bps to IrDA communication;

(10).Support full-duplex and half-duplex communication, provide transmitting and receiving indicator for RS485;

(11).Built-in half-duplex transceiver, support multi-device communication like RS485;

(12).Support preset local address in slave mode. to match data packet over bus in multi-device communication.

13.2 UART register

Name	Address	Description	Reset value
SBUF	99h	UART0 data buffer register	xxh
SCON	98h	UART0 control register	00h
SER1_DLL	9Ah	UART1 divisor latch LSB byte register	xxh
SER1_RBR	9Ah	Read-only: UART1 receiver buffer register	xxh
SER1_THR	9Ah	Write-only: UART1 transmitter holding register	xxh
SER1_FIFO	9Ah	UART1 FIFO register	xxh
SER1_DIV	97h	UART1 pre-divisor latch byte	xxh
SER1_ADDR	97h	UART1 bus address preset register	FFh
SER1_MSR	96h	Read-only: UART1 modem status	F0h
SER1_LSR	95h	Read-only: UART1 line status	60h
SER1_MCR	94h	UART1 modem control	00h
SER1_LCR	93h	UART1 line control	00h
SER1_IIR	92h	Read-only: UART1 interrupt identification	01h
SER1_FCR	92h	Write-only: UART1 FIFO control	00h
SER1_DLM	91h	UART1 divisor latch MSB byte	80h
SER1_IER	91h	UART1 interrupt enable	00h

Table 13.2.1 list of UART relative register

13.2.1 UART0 register description

SCON - UART0 control register

Bit	Name	Access	Description	Reset value
			UART0 mode bit0, selection data bit:	
7	SM0	RW	0 = 8 bits data,	0
			1 = 9 bits data	
6	SM1	RW	UART0 mode bit1, selection baud rate:	0

			0 = fixed,	
			1 = variable	
5	SM2	RW	Enable multi-device communication in mode 2/3:	0
			Enable UART0 receiving;	
4	REN	RW	0 = disable.	0
			1 = enable	
3	TB8	RW	The 9th transmitted data bit in mode 2/3	0
2	DDQ	RB8 RW	9th data bit received in mode 2/3, or stop bit received	0
2	2 KB8		for mode 1	
1	TI	DW	Transmit interrupt flag, set by hardware after	0
1	11	ĸw	completion of a serial transmittal, need software clear	0
0	DI	DW	Receive interrupt flag, set by hardware after	0
0	KI	KI KW	completion of a serial receiving, need software clear	0

Table 13.2.1.1 UARTO working mod

SM0	SM1	Description
0	0	Mode 0, shift Register, baud rate fixed at: Fsys/12
0	1	Mode 1,8-bit UART, baud rate = variable by timer1 or timer2 overflow rate
1	0	Mode 2, 9-bit UART, baud rate fixed at: Fsys/128@SMOD = 0, Fsys/32@SMOD = 1
1	1	Mode 3,9-bit UART, Baud rate = variable by timer1 or timer2 overflow rate

In mode1 and mode 3, UART0 baud rate is generated by T1 when RCLK = 0 and TCLK = 0. Set T1 in mode 2 auto reload 8-bit timer, clear bT1_CT and bT1_GATE 0, as follow:

bTMR_CL	bT1_CLK	SMOD	Description
K			
1	1	0	TH1 = 256 - Fsys / 32 /baud rate
1	1	1	TH1 = 256 - Fsys / 16 /baud rate
0	1	0	TH1 = 256 - Fsys / 4 / 32 / baud rate
0	1	1	TH1 = 256 - Fsys / 4 / 16 / baud rate
Х	0	0	TH1 = 256 - Fsys / 12 / 32 / baud rate
Х	0	1	TH1 = 256 - Fsys / 12 / 16 / baud rate

Table13.2.1.2 calculation formula of UART0 baud rate

In mode 1 and mode 3, UART0 baud rate is generated by T2 when RCLK = 1 and TCLK = 1. Set T2 in mode 2 auto reload 16-bit timer clear C_T2 and CP_RL2 0, as follow:

Table13.2.1.3	calculation	formula	of UART0	baud rate
---------------	-------------	---------	----------	-----------

bTMR_CL	bT2_CLK	Description
K		
1	1	RCAP2 = 65536 - Fsys / 16 / baud rate
0	1	RCAP2 = 65536 - Fsys / 2 / 16 / baud rate
X	0	RCAP2 = 65536 - Fsys / 4 / 16 / baud rate

SBUF - UART0 data register

Bit	Name	Access	Description	Reset value
-----	------	--------	-------------	-------------

[7:0]	SBUF	RW	UART0 data buffer: reading for receiving, writing for transmittal	xxh

13.2.2 UART1 relative register

SER1_FIFO is consisting of two physical-separated register: receive buffer SER1_RBR and Transmit buffer SER1_THR.

SER1_RBR - UART1 receiver buffer register, valid when bLCR_DLAB = 0:

Bit	Name	Access	Description	Reset value
[7:0]	SER1_RBR	RO	Read data from the register when bLSR_DATA_RDY = 1;if bFCR_FIFO_EN ,date in shift register will be stored in receiver first and may be read from this register	xxh

SER1_THR - UART1 transmitter holding register, valid when $bLCR_DLAB = 0$

Bit	Name	Access	Description	Reset value
[7:0]	SER1_THR	WO	Transmit holding register, include FIFO. Data written will be stored in FIFO first and send through SER1_THR one by one.	xxh

SER1_IER - UART1 interrupt enable, valid when $bLCR_DLAB = 0$

Bit	Name	Access	Description	Reset value
7	bIER_RESET	RW	UART1 software reset control, high action, auto clear	0
6	bIER_EN_MOD EM_O	RW	Enable UART1 modem output signal, DTR connect P0.0, RTS connect P0.1	0
5	bIER_PIN_MOD 1	RW	UART1 pin mode high bit	0
4	bIER_PIN_MOD 0	RW	UART1 pin mode low bit	0
3	bIER_MODEM_ CHG	RW	UART1 interrupt enable for modem status change: 1 = enable. 0 = disable	0
2	bIER_LINE_ST AT	RW	UART1 interrupt enable for receiver line status: 1 = enable. 0 = disable	0
1	bIER_THR_EM PTY	RW	UART1 interrupt enable for THR empty: 1 = enable. 0 = disable	0
0	bIER_RECV_R DY	RW	UART1 interrupt enable for receiver data ready: 1 = enable. 0 = disable	0

UART1 PIN mode is seted by the combination of bIER_PIN_MOD1, bIER_PIN_MOD0, bUH1_DISABLE, bXBUS_CS_OE, bXBUS_AL_OE, bALE_CLK_EN, and the last four may combine RS485EN:

RS485EN = bUH1_DISABLE & ~ (bXBUS_CS_OE & ~ bXBUS_AL_OE | bALE_CLK_EN)

52

RS485E N	bIER_PIN_MOD 1	bIER_PIN_MOD 0	Mode description
х	0	0	RXD1 connect P4.0, disable TXD1
0	1	0	RXD1/TXD1 connect P2.6/P2.7
0	0	1	RXD1/TXD1 connect P4.0/P4.4
0	1	1	RXD1/TXD1/TNOW connect P2.6/P2.7/P2.5
1	1	0	RXD1/TXD1 connect iRS485 pins XA/XB
1	0	1	RXD1/TXD1 connect iRS485 pins XA/XB, TNOW connect
1	0	1	P4.4
1	1 1	1	RXD1/TXD1 connect iRS485 pins XA/XB, TNOW connect
1			P2.5

In iRS485 half-duplex mode, set as follow:

(1).Set bMCR_HALF 1 in SER1_MCR to enable half-duplex mode;

(2).Set bUH1_DISABLE 1 in UHUB1_CTRL to disable HP/HM.

SER1_IIR - UART1 interrupt identification register

Bit	Name	Access	Description	Reset value
[7:6]	MASK_U1_IIR_ ID	R0	Bit mask of UART1 IIR, FIFO enabled flag	00b
[5:4]	reserve	RO	Reserve	00b
[3:0]	MASK_U1_IIR_ INT	R0	Bit mask of UART1 interrupt flag	0001b
0	bIIR_NO_INT	RO	1 = no UART1 interrupt. 0 = interrupt	1

UART1 interrupt status consists of 4 bits: bIIR_INT_FLAG3,bIIR_INT_FLAG2,bIIR_INT_FLAG1 and bIIR_INT_FLAG0,detail as follow:

Name	Value	Туре	Source	Clear interrupt
U1_INT_SLV_ADD R	0Eh	UART1 interrupt by slave address match	Receive a data of UART address which match pre-address or broadcast-addre- ss	Read SER_IIR or disable Multi-device communication.
U1_INT_LINE_STA T	06h	UART1 interrupt by receiver line status	bLSR_OVER_ERR,bLSR_PAR_ERR,b LSR_FRAME_ERR,bLSR_BREAK_E RR	Read SER1_LSR
U1_INT_RECV_RD Y	04h	UART1 interrupt by receiver data available	Receive number reach FIFO trigger level	Read SER1_LSR
U1_INT_RECV_TO UT	0Ch	UART1 interrupt by receiver FIFO timeout	Receive data already and not receive next data over 4-byte time	Read SER1_LSR
U1_INT_THR_EMP TY	02h	UART1 interrupt by THR empty	UART1 interrupt by THR empty, bIER- _THR_EMPTY change from 0 to 1 may re-enable this interrupt.	Read SER1_LSR or write SER1_T- HR
U1_INT_MODEM_	00h	UART1 interrupt	\triangle CTS, \triangle DSR, \triangle RI, \triangle DCD	Read SER1_LSR

R

SER1_FCR - FIFO control register

Bit	Name	Access	Description	Reset value
7	bFCR_FIFO_TR IG1	W0	UART1 receiver FIFO trigger level high bit	0
6	bFCR_FIFO_TR IG0	W0	UART1 receiver FIFO trigger level low bit	0
[5:3]	reserve	RO	Reserve	000b
2	bFCR_T_FIFO_ CLR	W0	1 = clear UART1 transmitter FIFO, high action, auto clear	0
1	bFCR_R_FIFO_ CLR	W0	1 = clear UART1 receiver FIFO, high action, auto clear	0
0	bFCR_FIFO_EN	W0	1 = UART1 FIFO enable. 0 = disable	0

MASK_U1_FIFO_TRIG consists of bFCR_FIFO_TRIG1 and bFCR_FIFO_TRIG0, which is used to set receive FIFO interrupt and hardware flow control trigger level:

00 = 1 byte,

01 = 2 bytes,

10 = 4 bytes,

11 = 7 bytes.

SER1_	LCR -	UART1	line	control	register:
-------	-------	-------	------	---------	-----------

Bit	Name	Access	Description	Reset value
			UART1 divisor latch access bit enable.	
7	bLCR_DLAB	RW	$0 = SER1_RBR,SER1_THR,SER1_IER,SER1_ADR.$	0
			1 = SER1_DLL,SER1_DLM,SER1_DIV	
	LCD DDEAN		UART1 break control enable:	
6	ULCK_BREAK_	RW	0 = no BREAK output,	0
	EN		1 = for make BREAK output	
5	bLCR_PAR_MO	RW	UART1 parity mode high hit	0
	D1	i con		
4	bLCR_PAR_MO	RW	UART1 parity mode low bit	0
	D0			-
			UART1 parity bit enable:	
3	bLCR_PAR_EN	RW	0 = disable,	0
			1 = enable	
	HCP STOP PI		UART1 stop bit length:	
2	T	RW	0 = 1 bit,	0
	I		1 = 2 bits	

54

1	bLCR_WORD_S Z1	RW	UART1 word bit length high bit	0
0	bLCR_WORD_S Z0	RW	UART1 word bit length low bit	0

The combination of bLCR_PAR_MOD1 and bLCR_PAR_MOD0 is used to set parity mode when

 $bLCR_PAR_EN = 1:$

00 = odd parity;

01 = even parity;

10 = mark bit parity;

11 = space parity.

The combination of bLCR_WORD_SZ1 and bLCR_WORD_SZ0 is used to set data length:

00 = 5 bit;

01 = 6 bit;

10 = 7 bit;

11 = 8 bit.

SER1_MCR - UART1 modem control register

Bit	Name	Access	Description	Reset value
7	hMCD HALE	DW	1 = UART1 enable half-duplex mode	0
/	DMCK_HALF	ĸw	0 =disable	0
			UART1 RTS Pin mode selection:	
6	bMCR_TNOW	RW	0 = enable TNOW output on RTS pin.	0
			1 = standard RTS output.	
	INCR AUTO E		UART1 enable auto flow control by CTS & RTS pin:	
5	LOW	RW	1 = enable.	0
	LOW		0 = disable	
			UART1 enable local loop back for testing:	
4	bMCR_LOOP	RW	1 = enable.	0
			0 = disable	
2	hMCD OUT2	DW	1 = enable interrupt request output,	0
3	DWICK_0012	ĸw	0 = disable	0
2	bMCR_OUT1	RW	UART1 control OUT1, not real pin	0
			UART1 RTS output control bit:	
1	bMCR_RTS	RW	0 = invalid (high -level).	0
			1 = valid(low-level)	
			UART1 DTR output control bit:	
0	bMCR_DTR	RW	0 = invalid (high -level).	0
			1 = valid(low-level)	

SER1_LSR - UART1 line status register

Bit	Name	Access	Description	Reset value
7	bLSR_ERR_R_F IFO	R0	Error in UART1 receiver FIFO, read to clear	0
6	bLSR_T_ALL_E	R0	UART1 transmitter all empty status	1

	MP			
5	bLSR_T_FIFO_ FMP	R0	UART1 transmitter FIFO empty status	1
4	blsk_break_	R0	UART1 receiver break error, read to clear	0
	ERR			
2	bLSR_FRAME_	DO		0
3	ERR	R0	UARI I receiver frame error, read to clear	0
2	bLSR_PAR_ER	DO		0
2	R	R0	UART receiver parity error, read to clear	0
1	bLSR_OVER_E	DO		0
1	RR	к0	UART receiver overflow error, read to clear	0
0	bLSR_DATA_R	DO		0
0	DY	K 0	UAKI I receiver FIFO data ready status, auto clear	0

SER1_MSR - UART1 modem status register

Bit	Name	Access	Description	Reset value
7	bMSR_DCD	R0	UART1 DCD action status:1 = valid	1
6	bMSR_RI	R0	UART1 RI action status:1 = valid	1
5	bMSR_DSR	R0	UART1 DSR action status:1 = valid	1
4	bMSR_CTS	R0	UART1 CTS action status: 1 = valid	1
3	bMSR_DCD_C	PO	UAPT1 DCD changed status high action read to clear	0
3	HG	K0	UART I DED changed status, high action, read to creat	0
2	bMSR_RI_CHG	R0	UART1 RI changed status, high action, read to clear	0
1	bMSR_DSR_CH	P0	UART1 DSP changed status high action read to clear	0
1	G	RO	OARTI DSK changed status, nigh action, read to creat	0
0	bMSR_CTS_CH	RO	UART1 CTS changed status high action read to clear	0
0	G	K0	OARTI CIS changed status, high action, itad to clear	0

SER1_ADDR - UART1 slave address preset register, valid when $bLCR_DLAB = 0$

Bit	Name	Access	Description	Reset value
[7:0]	SER1_ADDR	RW	UART1 bus address preset register	FFh(invalid)

SER_ADDR preset local address for multi-device communication in slave mode, interrupt when address match or receive broadcast address and allow receiving the following data. Not allow to receive any data before receive matching address, and stop receive when start to send or rewrite SER1_ADDR until address match or receive broadcast address dress.

Bus address auto-compare function is disable when SER1_ADDR = 0FFH, or bLCR_PAR_EN = 0.

Bus address auto-compare function is enable when SER1_ADDR != 0FFH and bLCR_PAR_EN = 1, and configure as follow: set bLCR_WORD_SZ1, bLCR_WORD_SZ0, bLCR_PAR_MOD1 1, set bLCR_PAR_MOD0 1 when address bit is 0 and clear bLCR_PAR_MOD0 0 when address bit is 1.

SER1_DLM.SER1_DLL - UART1 baud rate divisor register, valid when bLCR_DLAB = 1:

Bit	Name	Access	Description	Reset value
-----	------	--------	-------------	-------------

56

[7:0]	SER1_DLL	RW	Baud rate divisor consists of SER1_DLL(low byte)and DLM(high byte).and valid when	xxh
[7:0]	SER1_DLM	RW	bLCR_DLAB = 1. Baud rate divisor = Fsys * 2 / SER1_DIV / 16 / baud rate	80h

SER1_DIV - UART1 pre-divisor latch byte register valid when bLCR_DLAB = 1:

Bit	Name	Access	Description	Reset value
[7:0]	SER1_DIV	RW	Generate internal base clock for baud rate generator after Fsys multiplier and divisor. Valid when bLCR_DLAB = 1	xxh

13.3 UART application

UART0 application:

(1).Select UART0 baud rate generator from T1 or T2 and set counter.

(2).Enable timer.

(3).Set SM0, SM1, SM2 in SCON to select UART0 work mode. Set REN 1 and enable UART0 receiver,

(4).Set UART interrupt or query RI and TI interrupt status.

(5).Write SBUF to send and read SBUF to receive data, and the allowed receive baud rate error should be less than 2%.

UART1 application:

(1).Set bLCR_DLAB in SER1_LCR 1, set SER1_DIV, count the baud rate divisor and write into SER1_DLM and SER1_DLL.

(2).Set SER_LCR to select data length and parity bit.

(3).Set SER_IER to select interrupt (optional).

(4).Set bMCR_OUT2 in SER1_MCR to enable interrupt output when interrupt enabled, otherwise query the interrupt status

(5).Read or write SER_FIFO to receive or transmit data, and the allowed receive baud rate error should be less than 2%.

14 Synchronous serial Interface SPI

14. SPI1 brief introduction

CH559 chip provides 2*SPI interfaces which are used for high-speed synchronous data transmission between peripheral devices.

SPI0 features:

(1) Support master mode and slave mode

(2).Support mode 0 and moe3 clock mode

(3).3 line full duplex mode or 2 line half-duplex modes is optional

(4).MSB high bit or LSB low bit is optional to send first

(5).Clock frequency is variable and can be maximum half of system frequency

(6).3 byte receives FIFO and 1 byte sending FIFO inside

(7).Support different kinds of interrupt

SPI1 features:

(1).Support master mode only, MSB high bit send in first

(2).Support clock mode0 and mode3

- (3).3 line full duplex mode or 2 line half-duplex modes is optional
- (4).Clock frequency is variable and can be maximum half of system frequency

14.2 SPI register

Name	Address	Description	Reset value
SPI0_SETUP	FCh	SPI0 configuration register	00h
SPI0_S_PRE	FBh	SPI0 slave mode preset data register	20h
SPI0_CK_SE	FBh	SPI0 clock frequency division configuration Register	20h
SPI0_CTRL	FAh	SPI0 control register	02h
SPI0_DATA	F9h	SPI0 data receive and send register	xxh
SPI0_STAT	F8h	SPI0 status register	08h
SPI1_CK_SE	B7h	SPI1 clock frequency division configuration Register	20h
SPI1_CTRL	B6h	SPI1 control register	02h
SPI1_DATA	B5h	SPI1 data receive and send register	xxh
SPI1_STAT	B4h	SPI1 status register	08h

Table 14.2.1 List of SPI registers

14.2.1 SPI0 register

SPI0_SETUP - SPI0 configuration register

Bit	Name	Access	Description	Reset value
	LEO MODE EL		SPI0 master/slave mode select bit:	
7	USU_MODE_SL	RW	0 = master mode.	0
	v		1 = slave mode/device mode	
	heo ie eieo o		FIFO overflow interrupt enable bit in slave mode:	
6	USU_IE_FIFU_U	RW	1 = FIFO overflow interrupt is enabled.	0
	v		0 = FIFO overflow will not result in interrupt	
			The first receive byte interrupt in slave mode enable	
			bit:	
5	bS0_IE_FIRST	RW	1 = The first receive byte will trigger interrupt in slave	0
			mode.	
			0 = The first receive byte will not trigger interrupt	
			Data byte transfer completion interrupt enable bit:	
4	bS0_IE_BYTE	RW	1 = byte transfer completion interrupt is enabled.	0
4			0 = byte transfer completion interrupt will not result in	
			interrupt	
	LEO DIT ODDE		Data byte bit order control bit:	
3	DSU_DII_OKDE	RW	0 = MSB high bit in first.	0
	ĸ		1 = LSB low bit in first	
2	Reserve	RO	Reserve	0
			CS activated state bit in slave mode:	
1	bS0_SLV_SELT	R0	0 = not selected at present.	0
			1 = selected at present	

|--|

0	bS0_SLV_PREL OAD	R0	Preload data state bit in slave mode 1 = it is in preload state before data transmission while CS is valid	0
---	---------------------	----	--	---

SPI0_CK_SE - SPI0 clock frequency division configuration register

Bit	Name	Access	Description	Reset value
[7:0]	SPI0_CK_SE	RW	SPI0 clock frequency division coefficient setting in master mode	20h

SPI0_S_PRE - SPI0 slave mode preset data register

Bit	Name	Access	Description	Reset value
[7:0]	SPI0_S_PRE	RW	Pre-load the first transfer data in slave mode	20h

SPI0_CTRL - SPI0 control register

Bit	Name	Access	Description	Reset value
7	bS0_MISO_OE	RW	 SPI0 MISO output enable control bit: 1 = enable output. 0 = disable output MISO does not rely on this bit in slave mode because the output is enabled automatically when CS input is valid 	0
6	bS0_MOSI_OE	RW	SPI0 MISO output enable control bit:1 = enable output.0 = disable output	0
5	bS0_SCK_OE	RW	SPI0 SCK output enable control bit:1 = enable output.0 = disable output	0
4	bS0_DATA_DIR	RW	 SPI0 data direction control bit: 0 = output data, only regard FIFO writing as valid operation, start a SPI transmission 1 = input data, reading or writing FIFO are all valid ,start a SPI transmission 	0
3	bS0_MST_CLK	RW	 SPI0 master clock mode control bit: 0 = mode0, default low level when SCK is free. 1 = mode3,SCK default high level 	0
2	bS0_2_WIRE	RW	 SPI0 2 line half duplex mode enable bit: 0 = 3 line full duplex mode, including SCK, MOSI, and MISO. 1 = 2 line half duplex mode enable bit including SCK, MISO 	0
1	bS0_CLR_ALL	RW	1 = clear SPI0 interrupt flag and FIFO, software cleared	1
0	bS0_AUTO_IF	RW	Clear byte receiving completion interrupt flag	0

	automatically by FIFO valid operation enable bit	
	1 = it will Clear byte receiving completion interrupt	
	flag S0_IF_BYTE automatically when there is valid	
	FIFO read/write operation	

SPI0_DATA - SPI0 data receive and send register

Bit	Name	Access	Description	Reset value
[7:0]	SPI0_DATA	RW	Consist of sending and receiving physically separated FIFO, reading operation corresponds to data receive FIFO, writing operation corresponds to data send FIFO, SPI transmission can be started by valid read and write operation	xxh

SPI0_STAT - SPI0 state register

Bit	Name	Access	Des	cription	Reset value
7	S0_FST_ACT	R0	1 = first byte has been rec	eived in slave mode	0
			FIFO overflow flag in sla	ve mode:	
			1 = FIFO overflow interru	ıpt.	
			0 = no interrupt		
6	S0_IF_OV	RW	It can be cleared by di	rectly visiting or writing 1	0
			$bS0_DATA_DIR = 0, se$	nding FIFO empty triggers	
			interrupt bS0_DATA_DII	R = 1, receiving FIFO empty	
			triggers interrupt		
			The first byte received	completion interrupt flag in	
5	CO LE EIDCT	DW	slave mode:		0
3	50_IF_FIK51	KW	1 = the first byte has been	en received, it can be cleared	0
			by visiting directly or wri	ting 1	
			Data byte transfer comple	etion interrupt flag	0
4	SO LE DVTE	DW	1 = one byte has been tra	ansferred, cleared by directly	
4	50_IF_BTIE	ĸw	visiting or writing 1,va	alid FIFO operation while	
			bS0_AUTO_IF = 1 can al	lso clear it	
			SPI0 empty flag:		
3	S0_FREE	R 0	1 = ,no SPI shifting at	present, usually in idle	1
			period between data bytes	5	
2	S0_T_FIFO	R0	SPI0 sending FIFO count	, the valid value is 0 or 1	0
1		DO	SPI receiving FIFO		0
1	SU_R_FIFU1	R0	count bit 1		0
0		DO	SPI receiving FIFO	valid value is 0,1,2,0r3	0
0	S0_K_FIFO0	R0	count bit 0		0

14.2.2 SPI1 register description

SPI1_STAT - SPI1 status register

Bit	Name	Access	Description	Reset value
[7:5]	RESERVE	RO	Reserve	000b

4	bS1_IF_BYTE	RW	Data byte transfer completion interrupt flag: 1 = one byte has been transferred, cleared by directly visiting or writing 1, valid FIFO operation while $hSO_AUTO_{IE} = 1$ can also clear it	0
3	bS1_FREE	R0	SPI1 empty flag: 1 = no SPI shifting at present, usually in idle	1
[2:0]	reserve	RO	Reserve	000b

SPI1_DATA - SPI1 data receive and send register

Bit	Name	Access	Description	Reset value
[7:0]	SPI1_DATA	RW	SPI1 data shifting register in actual, reading is data receiving, writing is data sending, SPI transmission can be started once by valid read and write operation	xxh

SPI1_CTRL - SPI1 control register

Bit	Name	Access	Description	Reset value
			SPI1 MISO1 output enable control bit:	
7	bS1_MISO_OE	RW	1 = enable output.	0
			0 = disable output	
6	RESERVE	RO	Reserve	0
			SPI1 SCK1 output enable control bit:	
5	LEI SCK OF	DW	1 = enable SCK1 output, MOSI1 output can also be	0
5	DSI_SCK_UE	ĸw	enabled in the meantime if $bS1_2$ _WIRE = 0.	0
			0 = disable output	
			SPI1 data direction control bit:	
			0 =, output data, only regard writing SPI1_DATA as	
4	bS1_DATA_DIR	RW	valid operation, start SPI transmission once.	0
			1 = input data, writing or reading SPI1_DATA are all	
			valid operation and can trigger SPI1 transmission once	
			SPI1 clock mode control bit :	
3	bS1_MST_CLK	RW	0 = mode0, default low level when SCK1 is free.	0
			1 = ,mode3,default high level when SCK1 is free	
			SPI1 2 line half duplex mode enable bit:	
2	bS1 2 WIRE	RW	0 = 3 line full duplex mode, including SCK1, MOSI1,	0
2	051_2_WIKL	IX W	and MISO1.	0
			1 = 2 line half duplex mode, including SCK1, MISO1	
1	hsi cir ali	рW	1 = clear SPI1 interrupt flag and FIFO,	1
1	USI_CER_ALL	IX W	software cleared	1
			Clear byte receiving completion interrupt flag	
			automatically by SPI1_DATA valid operation enable	
0	bS1_AUTO_IF	RW	bit:	0
			1 = it will Clear byte receiving completion interrupt	
			flag bS1_AUTO_IF automatically when there is valid	

		SPI1_DATA read/write operation	
--	--	--------------------------------	--

SPI1	CK SE-	- SPI1	clock	frequenc	v division	configur	ation	register
~								

Bit	Name	Access	Description	Reset value
[7:0]	SPI1_CK_SE	RW	SPI1 clock divisor setting	20h

14.3 SPI transmission mode

SPI host mode support 2 kinds of transmission format including mode0 and mode3 ,which can be selected by setting bSn_MST_CLK of SPI control register SPIn_CTRL,CH559 always samples MISO data during CLK rising edge, the data transmission format is shown in the diagram below:

mode0: $bSn_MST_CLK = 0$

Table 14.3.1 SPI mode0 sequence diagram

```
mode3: bSn_MST_CLK = 1
```


Table 14.3.2 SPI mode3 sequence diagram

14.4 SPI configuration

14.1.1 SPI host mode configuration

SCK pin outputs serial clock, CS output pin can be assigned as any I/O pin in SPI host mode SPI0 configuration steps:

- (1).Configure SPI clock frequency by setting SPI clock frequency division configuration registers SPI0_CK_SE,
- (2).Configure SPI host mode by setting bS0_MODE_SLV of SPI configuration register SPI0_SETUP0
- (3).Set bS0_MST_CLK of SPI control register SPI0_CTRL, configuration as mode 0 or 3 according to the demand
- (4).Set bS0_SCK_OE and bS0_MOSI_OE of SPI control register SPI0_CTRL at 1, bS0_MISO_OE as 0, set P1 direction bSCK.bMOSI as output, bMISO as input, and CS pin as output

Data sending process

(1).Write SPI0_DATA register, write data ready for sending to FIFO and start SPI transmission once

automatically

(2).Wait for S0_FREE until it is 1, it shows that data sending is over, and can continue to send next byte Data receiving process

- (1).Write SPI0_DATA register, start SPI transmission once by writing any data such as 0FFh to FIFO.
- (2).Wait for S0_FREE until it is 1, it shows that data receiving is over, and can get data by reading SPI0_DATA
- (3). The operation above can also start SPI transmission once while bS0_DATA_DIR has been 1, otherwise no SPI transmission starts
- 14.4.2 Configure the SPI in slave mode SPI

Only SPI0 supports slave mode. In the slave configuration, the serial clock is received on the SCK pin from the master device.

(1). Set the bS0_MODE_SLV bit in the SPI0_SETUP register for slave mode.

(2). Clear the bS0_SCK_OE bit and bS0_MOSI_OE bit (both in the SPI0_CTRL register), and set bS0_MISO_OE bit, and configure bSCK pin, bMOSI pin, bMISO pin and CS pin direction for input. It will enable MISO pin output automatically if CS pin is effective (low level). In addition, it is recommended to set MISO pin high-impedance input mode (bP1_OC=0、P1_DIR[6]=0、P1_PU[6]=0), so that the MISO does not output when CS pin is not effective (high level), which is conducive to sharing the SPI bus.

(3).Optionally, configure SPI0_S_PRE register for the first data output after the CS pin is effective. After the 8 serial clocks, that is the first data byte exchanged, the CH559 slave device gets the first byte from SPI host, and the external SPI host gets the data byte in the SPI0_S_PRE register. The bit 7 in the SPI0_S_PRE register will be sent to the MISO pin during SCK is low after the CS pin is effective. In SPI mode 0, If set the bit 7 in the SPI0_S_PRE register, the external SPI host will get the state of bit 7 in the SPI0_S_PRE register by read MISO pin when the CS pin is effective but not transmitted data.

Transmit process:

(1) Wait for S0_IF_BYTE bit setting or interrupt for a byte data exchanged event.

(2) Write the SPI0_DATA register for sending data to the FIFO.

(3) Or wait the S0_FREE bit changed from 0 to 1, continue to send next byte.

Receive process:

(1) Wait for S0_IF_BYTE bit setting or interrupt for a byte data exchanged event.

(2) Read the SPI0_DATA register for receiving data from the FIFO.

(3) Query MASK_S0_RFIFO_CNT register (that consists of S0_R_FIFO1 bit and S0_R_FIFO0 bit) to obtain the number of bytes remaining in FIFO.

15. Analog to Digital Converter(ADC)

15.1 ADC Brief introduction

The optional 10-bit or 11-bit ADC of the CH559 MCU is a successive approximation analog-to-digital converter. It has up to 8 multiplexed for time-sharing sampling.

ADC main features:

- (1).Optional 10-bit or 11-bit resolution.
- (2).ADC input range: $0 \le V_{IN} \le V_{DD33}$.
- (3).Sampling rate up to 1MSPS.
- (4).Scan mode for automatic conversion of two channels.
- (5).Built-in 2-level FIFO, support automatic sampling and DMA.

Name	Address	Description	Reset Value			
ADC_EX_SW	F7h	ADC extend switch control	00h			
ADC_SETUP	F6h	ADC setup	08h			
ADC_FIFO_H	F5h	ADC FIFO high byte (Read-only)	0xh			
ADC_FIFO_L	F4h	ADC FIFO low byte (Read-only)	xxh			
ADC_FIFO	F4h	ADC FIFO word (Read-only), little-endian	0xxxh			
ADC_CHANN	F3h	ADC channel selection	00h			
ADC_CTRL	F2h	ADC control	00h			
ADC_STAT	F1h	ADC status	04h			
ADC_CK_SE	EFh	ADC clock divisor setting	10h			
ADC_DMA_CN	EEh	DMA remainder word count	00h			
ADC_DMA_AH	EDh	DMA address high byte	0xh			
ADC_DMA_AL	ECh	DMA address low byte	xxh			
ADC DMA	ECh	DMA address word, must even address, little-endian,	0xxxh			

15.2 ADC Registers

Table 15.2.1 list of ADC register

ADC_DMA- DMA address word

Bit	Name	Access	Description	Reset Value
			High byte of DMA 16-bit address.	
			This byte is the initial value of the high byte of the	
[7:0]		DW	DMA 16-bit address and then the DMA address is	Ovh
[7.0]	ADC_DMA_AII	ĸw	increased automatically.	UXII
			Only the low 4 bits are valid, and high 4 bits is fixed	
			by 0.Only supports the previous 4K of xRAM	
		RW	Low byte of DMA address.	
			This byte is the initial value of the low byte of the	
[7.0]			DMA 16-bit address and then the DMA address is	1
[7:0]	ADC_DMA_AL		increased automatically.	XXII
			Only the high 7 bits are valid, and the low bit is fixed	
			by 0.Only supports the even address	

ADC_DMA_CN- DMA remainder word count

Bit	Name	Access	Description	Reset Value
[7:0]	ADC_DMA_C N	RW	DMA remainder word count. This byte is the initial value of the DMA remainder count and then the DMA remainder count is decreased automatically.	00h

ADC_CK_SE- ADC clock divisor setting

Bit	Name	Access	Description	Reset Value
7	bADC_CHK_C	DW	AIN7 level check delay clock frequency selection bit:	00b
/	LK_SEL	IX VV	$0 = \text{slow} (1 \text{xf}_{\text{sys}})$	0011

			$1 = \text{fast} (4 x f_{\text{sys}})$	
[6:0]	MASK_ADC_ CK_SE	RW	ADC clock divisor for ADC working clock	10h

ADC_STAT- ADC status

Bit	Name	Access	Description	Reset Value
7	bADC_IF_DMA _END	RW	DMA complete flag. This bit is set to 1 via hardware while DMA complete. This bit must be cleared via software. Write 1 to clear or write ADC_DMA_CN to clear.	0
6	bADC_IF_FIFO _OV	RW	FIFO overflow flag. This bit is set when FIFO overflows. Software can write 1 to clear.	0
5	bADC_IF_AIN7 _LOW	RW	AIN7 low level flag. This bit is set when checking AIN7 low level. Write 1 to clear by software.	0
4	bADC_IF_ACT	RW	ADC finished flag. This bit is set when an ADC conversion complete. Software can write 1 to clear.	0
3	bADC_AIN7_I NT	R0	1 = current AIN7 low level delay status	0
2	bADC_CHANN _ID	R0	Current channel ID in channel automatic switch mode: 0 = AIN0 or AIN6. 1 = AIN1 or AIN4 or AIN7.	0
2	bADC_DATA_O K	RO	ADC end and data ready flag in channel manual selection mode: 0 = data not ready. 1 = data ready.	1
[1:0]	MASK_ADC_FI FO_CNT	R0	Current ADC FIFO count.	00b

The size of MASK_ADC_FIFO_CNT is 2 bits, indicating the current count of ADC FIFO.

MASK_ADC_FIFO_ CNT	Description
00b	empty FIFO, return current ADC result if reading FIFO
01b	1 result in FIFO
10b	2 results in FIFO, and FIFO full
11b	unknown error

ADC_CTRL- ADC control

Bit	Name	Access	Description	Reset Value
7	bADC_SAMPL E	RW	In manual sample mode, this bit is for sampling pulse control. High level pulse action. In automatic sample mode, this bit is sample pulse state.	0

65

6	bADC_SAMP_ WIDTH	RW	In automatic sample mode, sample pulse width: 0 = 1 ADC clock. 1 = 2 ADC clocks.	0
5	bADC_CHAN N_MOD1	RW	ADC channel control mode high bit.	0
4	bADC_CHAN N_MOD0	RW	ADC channel control mode low bit.	0
[3:0]	MASK_ADC_ CYCLE	RW	ADC automatic sample cycle: 0 = manual sample. others = set cycle number for automatic sample	0000Ъ

MASK_ADC_CHANN consists of bit bADC_CHANN_MOD and bit bADC_CHANN_MOD0, indicates the current channel control mode.

MASK_ADC_CH	Description
ANN	Description
00b	channel manual selection mode by SFR ADC_CHANN
01b	automatic switch mode between AIN0 and AIN1
10b	automatic switch mode between AIN6 and AIN4
11b	automatic switch mode between AIN6 and AIN7

ADC_CHANN- ADC channel selection

Bit	Name	Access	Description	Reset Value
[7:0]	ADC_CHANN	RW	ADC channel selection: Set ADC current sample channel, bit0 ~ bit7 corresponds to channel AIN0 ~ AIN7. Cannot select multiple bits simultaneously.	00h

ADC_FIFO- ADC FIFO (Read-only):

Bit	Name	Access	Description	Reset Value
[7:0]	ADC_FIFO_H	RO	High byte of 16-bit ADC FIFO. Only the low 4 bits are valid, and high 4 bits are fixed by 0.	0xh
[7:0]	ADC_FIFO_L	RO	Low byte of 16-bit ADC FIFO.	xxh

ADC_SETUP- ADC setup:

Bit	Name	Access	Description	Reset Value
	hADC DMA		DMA and DMA interrupt enable for ADC:	
7	UADC_DMA_	RW	0 = Disable DMA and DMA interrupt.	0
	EN		1 = Enable DMA and DMA interrupt.	
6	bADC_IE_FIF	DW	0 = Disable FIFO overflow interrupt.	0
0	O_OV	K W	1 = Enable FIFO overflow interrupt.	0
5	bADC_IE_AIN	DW	0 = Disable interrupt for AIN7 low level checking.	0
5	7_LOW	K W	1 = Enable interrupt for AIN7 low level checking.	0
4	bADC_IE_AC	DW	0 = Disable interrupt for a ADC finished.	0
	Т	K W	1 = Enable interrupt for a ADC finished.	0
3	bADC_CLOC	RO	current level of internal ADC clock	0

	K			
2	bADC_POWE R_EN	RW	ADC power control: 0 = shut down ADC power. 1 = enable power for ADC	0
1	bADC_EXT_S W_EN	RW	Extend switch module power control: 0 = shut down. 1 = enable power for extend switch.	0
0	bADC_AIN7_ CHK_EN	RW	AIN7 level check module power control: 0 = shut down. 1 = enable power for AIN7 level check.	0

ADC_EX_SW- ADC extend switch control

Bit	Name	Access	Description	Reset Value
	HADC SW AL		Internal AIN7 extend switch control:	
7	UADC_SW_AI	RW	0 = float AIN7.	0
	IN / _П		1 = tie AIN7 to high level VDD33.	
	HADC SW AL		Internal AIN6 extend switch control:	
6	UADC_SW_AI	RW	0 = float AIN6.	0
	NO_L		1 = tie AIN6 to low level GND.	
	HADC SW AL		Internal AIN5 extend switch control:	
5	DADC_SW_AI	RW	0 = float AIN5	0
	М3_П		1 = tie AIN5 to high level VDD33.	
	HADC SW AL		Internal AIN4 extend switch control.	
4	DADC_SW_AI	RW	0 = float AIN4.	0
	IN4_L		1 = tie AIN4 to low level GND.	
	LADC EVT S		Extend switch resistor selection:	
3	DADC_EAT_S	RW	$0 = \text{high resistor, about } 800\Omega.$	0
	W_SEL		$1 = $ low resistor, about 300 Ω .	0 0 0 0 0 0 0 0 0
	LADC DESOL		ADC resolution:	
2	UTION	RW	0 = 10 bits.	0
	UTION		1 = 11 bits.	
1	bADC_AIN7_	RW	AIN7 level check delay control bit 1	0
	DLY1	IX W		0
0	bADC_AIN7_ DLY0	RW	AIN7 level check delay control bit 0	0

MASK_ADC_AIN7_DLY consists of bit bADC_AIN7_DLY1 and bit bADC_AIN7_DLY0, for setting the delay time after detection AIN7 level change:

00 =No delay time

01 = Maximum delay time

10 = Long delay time

11 = Short delay time.

15.3 ADC functional description

ADC configuration steps:

(1) Setting the bADC_POWER_EN bit in the ADC_SETUP register, enable ADC module.

(2) Setting ADC_CK_SE register for ADC clock frequency ($f_{ADC} \le 12$ MHz), recommend no less than 1MHz.

(3) Clear FIFO by reading ADC_FIFO register. If interrupt or DMA function needed, enable them according to the above register description.

(4) Sampling:

In automatic conversion mode:

Configure the MASK_ADC_CYCLE in ADC_CTRL register for sampling cycles in automatic conversion mode. Select input channel by setting ADC_CHANN register.

In manual conversion mode:

Configure the MASK_ADC_CYCLE in ADC_CTRL register for manual conversion mode. Select input channel by setting ADC_CHANN register. To start a sampling pulse which is a high level pulse. Set the bADC_SAMPLE bit in the ADC_CTRL register and then continue for at least 1 ADC clock cycles and then clear to 0. Each ADC conversion needs a manual sampling pulse.

(5) Waiting for bADC_IF_ACT bit in the ADC_STAT register equal to 1 which means that the end of ADC conversion, read the ADC_FIFO register for the conversion data.

(6) Another way, read ADC_FIFO several times according to the value of MASK_ADC_FIFO_CNT in the ADC_STAT register. It is advisable to discard the first conversion data in FIFO.

(7) If use DMA, set buffer start address by writing ADC_DMA fist, second, set DMA remainder word count by writing ADC_DMA_CN, and finally set bADC_DMA_EN bit in the ADC_SETUP register for enabling DAM.

(8) There are 12 valid bits in the ADC FIFO. bit0~bit10 are conversion value and bit11 is flag which is fixed to 0 in manual channel selection mode and is a marker equivalent to bADC_CHANN_ID bit in auto channel selection mode.

16. Universal serial bus interface (USB)

16.1 USB Brief introduction

The CH559 is built-in USB controller and dual USB transceiver. USB main features:

(1).USB host and USB device

(2).Compatible with USB specification version 2.0 full-speed (12Mbps) or low-speed (1.5Mbps)

- (3).Support control transfers, Bulk transfers, Interrupt, Isochronous transfers
- (4).Dual port Root-HUB for USB host
- (5).Support Up to 64 bytes of USB data packets, built-in FIFO, and interrupt and DMA

There are 3 parts for USB registers, and some registers are multiplexed in host and device mode.

- (1).USB Global Registers Group
- (2).USB Device Control Registers Group
- (3).USB Host Control Registers Group

16.2 USB Global Registers

SFR Name	Address	Description	Reset Value
USB_RX_LEN	D1h	USB receiving data length (Read-only)	0xxx xxxxb
USB_INT_FG	D8h	USB interrupt flag	0010 0000b
USB_INT_ST	D9h	USB interrupt status (Read-only)	00xx xxxxb

Table 16.2.1 list of Global registers

USB_MIS_ST	DAh	USB miscellaneous status (Read-only)	xx10 1000b
USB_INT_EN	E1h	USB interrupt enable	0000 0000b
USB_CTRL	E2h	USB base control	0000 0110b
USB_DEV_AD	E3h	USB device address	0000 0000b
USB_DMA_AH	E7h	Low byte of 16-bit DMA address (Read-only)	000x xxxxb
USB_DMA_AL	E6h	High byte of 16-bit DMA address (Read-only)	xxxx xxx0b
USB_DMA	E6h	16-bit DMA address (consists of USB_DMA_AL and USB_DMA_AH)	xxxxh

USB_RX_LEN - USB receiving data length

Bit	Name	Access	Description	Reset Value
[7:0]	bUSB_RX_LEN	RO	The number of bytes received by the current USB endpoint.	xxh

USB_INT_FG - USB interrupt flag

Bit	Name	Access	Description	Reset Value	
			In USB device mode, (Read-only):		
			1 = current the host receives the USB response is		
7	U_IS_NAK	RO	NAK.	0	
			0 = current the host receives the USB response is not		
			NAK.		
			Current USB transmit data toggle flag status:		
6	U_TOG_OK	RO	1 = current USB DATA0/1 toggle is OK.	0	
			0 = current USB DATA0/1 toggle is not OK.		
			USB SIE free status:		
5	U_SIE_FREE	RO	1 = SIE is free.	1	
			0 = SIE is busy, USB transfer		
			FIFO overflow interrupt flag:		
4	LUE FIED OV		1 = FIFO is overflow.	0	
4		ĸw	0 = no interrupt.	U	
			Direct bit address clear or write 1 to clear.		
		In USB host mode, SOF timer interrupt flag:			
3		DW	1 = SOF packet transfer completes.	0	
3	UIF_H31_301 ⁻	IX VV	0 = no interrupt.	U	
			Direct bit address clear or write 1 to clear.		
			USB suspend or resume event interrupt flag:		
2	THE SUSPEND	PW	1 = suspend or resume event.	0	
Z		Γ VV	0 = .no interrupt.	U	
			Direct bit address clear or write 1 to clear.		
			USB transfer complete interrupt flag:		
1	UIF_TRANSFE	PW	1 = USB transfer complete.	0	
1	R	кw	0 = no interrupt.	0	
		1	Direct bit address clear or write 1 to clear.		

0	UIF_DETECT	RW	In USB host mode, checking device connect or disconnect: 1 = Device connection or disconnection event. 0 = no interrupt. Direct bit address clear or write 1 to clear.	0
0	UIF_BUS_RST	RW	In USB device mode, USB bus reset flag: 1 = USB bus reset event. 0 = no interrupt.	0

USB_INT_ST - USB interrupt status

Bit	Name	Access	Description	Reset Value
7	bUIS_IS_NAK	RO	In USB device mode: 1 = current received the USB response is NAK, (be equal to U_IS_NAK).	0
6	bUIS_TOG_OK	RO	USB transfer toggle state, (be equal to U_TOG_OK): 1 = current USB DATA0/1 toggle is OK. 0 = current USB DATA0/1 toggle is not OK.	0
5	bUIS_TOKEN1	RO	In USB device mode, current token PID code bit 1.	х
4	bUIS_TOKEN0	R0	In USB device mode, current token PID code bit 0.	Х
[3:0]	MASK_UIS_EN DP	RO	In USB device mode, current endpoint number of a transaction. Such as 0000 indicates that endpoint 0,, 1111 indicates that endpoint 15.	xxxxb
[3:0]	MASK_UIS_H_ RES	R0	In USB host mode, current token PID code.	xxxxb

MASK_UIS_TOKEN consists of bUIS_TOKEN1 bit and bUIS_TOKEN0 bit which is used to indicate the current host transmission PID to USB device:

00 = OUT Packet

01 = SOF Packet

10 = IN Packet

11 = SETUP Packet.

Bit	Name	Access	Description	Reset Value
7	bUMS_SOF_PR ES	RO	 SOF timer presage status in host mode: 1 = SOF packet will be sent. 0 = no SOF packet will be sent. 	х
6	bUMS_SOF_AC T	RO	SOF timer action status in host mode: 1 = sending SOF packet. 0 = free.	x
5	bUMS_SIE_FRE E	RO	USB SIE free status, (be equal to U_SIE_FREE): 1 = SIE is free. 0 = SIE is busy, USB transfer	1

USB_MIS_ST - USB miscellaneous status

4

bUMS_R_FIFO_

RDY

	USB receiving FIFO ready status :
RO	1 = receiving FIFO is not empty.
	0 = receiving FIFO is empty.
	USB bus reset status:
D O	

0

			6 17	
3	bUMS_BUS_RE SET	RO	USB bus reset status: 1 = bus reset. 0 = bus not reset.	1
2	bUMS_SUSPEN D	RO	USB suspend status : 1 = bus suspend. 0 = bus not suspend.	0
1	bUMS_H1_ATT ACH	RO	In host mode, device attached status on USB hub1 HP/HM: 1 = there is USB device being connected to Hub1. 0 = no device connecting.	0
0	bUMS_H0_ATT ACH	RO	In host mode, device attached status USB hub0 DP/DM: 1 = there is USB device being connected to Hub0. 0 = no device connecting.	0

USB_INT_EN - USB interrupt enable

Bit	Name	Access	Description	Reset Value
7	bUIE_DEV_SOF	RW	1 = enable interrupt for SOF received for USB device mode.0 = disable interrupt.	0
6	bUIE_DEV_NA K	RW	1 = enable interrupt for NAK responded for USB device mode.0 = disable interrupt.	0
5	reserve	RO	Reserve.	0
4	bUIE_FIFO_OV	RW	1 = enable interrupt for FIFO overflow.0 = disable interrupt.	0
3	bUIE_HST_SOF	RW	1 = enable interrupt for host SOF timer action for USB host mode.0 = disable interrupt.	0
2	bUIE_SUSPEN D	RW	1 = enable interrupt for USB suspend or resume event.0 = disable interrupt.	0
1	bUIE_TRANSF ER	RW	1 = enable interrupt for USB transfer completion.0 = disable interrupt.	0
0	bUIE_DETECT	RW	1 = enable interrupt for USB device detected event for USB host mode;0 = disable interrupt.	0
0	bUIE_BUS_RST	RW	1 = enable interrupt for USB bus reset event for USB device mode;0 = disable interrupt.	0

Bit	Name	Access	Description	Reset Value
7	bUC_HOST_M ODE	RW	USB mode selection: 1 = host mode. 0 = device mode.	0
6	bUC_LOW_SPE ED	RW	USB bus speed selection: 1 = low speed (1.5Mbps). 0 = full speed (12Mbps).	0
5	bUC_DEV_PU_ EN	RW	In USB device mode: 1 = enable USB device function and enable internal pull-up resistor. 0 = disable USB device function.	0
5	bUC_SYS_CTR L1	RW	USB system control high bit	0
4	bUC_SYS_CTR L0	RW	USB system control low bit	0
3	bUC_INT_BUS Y	RW	 1 = automatic responding busy (NAK) for device mode or automatic pause for host mode during interrupt flag UIF_TRANSFER valid. 0 = no pause. 	0
2	bUC_RESET_SI E	RW	1 = force reset USB SIE, need software clear.	1
1	bUC_CLR_ALL	RW	Force clear FIFO and count of USB, need software clear.	1
0	bUC_DMA_EN	RW	1 = DMA enable and DMA interrupt enable for USB 0 = disable DMA.	0

USB system control consists of bUC_HOST_MODE bit and bUC_SYS_CTRL1 bit and bUC_SYS_CTRL0 bit

bUC_HOST_MO DE	bUC_SYS_CT RL1	bUC_SYS_CT RL0	USB system control description	
0	0	0	Disable USB device function and disable internal pull-up resistor	
0	0	1	Enable USB device and disable internal pull-up resistor, need external pull-up resistor	
0	1	0	Enable USB device and enable internal pull-up resistor	
0	1	1	Enable USB device and enable internal weak pull-up resistor	
1	0	0	Enable USB host and normal status	
1	0	1	Enable USB host and force DP/DM output SE0 state	
1	1	0	Enable USB host and force DP/DM output J state	
1	1	1	Enable USB host and force DP/DM output resume or K state	
Bit	Name	Access	Description	Reset Value
-------	-------------------	--------	--	----------------
7	bUDA_GP_BIT	RW	General purpose bit. It can be set and clear.	0
[6:0]	MASK_USB_A DDR	RW	In host mode, this address is the operated device address. In device mode, it is the address of device	00h

USB_DMA - 16-bit DMA address

Bit	Name	Access	Description	Reset Value
[7:0]	USB_DMA_AH	RO	High byte of 16-bit DMA address. the low 5 bits are effective and the high 3 bits are fixed at 0.	xxh
[7:0]	USB_DMA_AL	R0	Low byte of 16-bit DMA address.	xxh

16.3 USB Device Control Registers

CH559 can configure number of bidirectional endpoints from 0 to 4 and the maximum data packet size for all endpoints is 64 bytes.

Endpoint0 is for default control pipe as a message pipe and control transfers are carried only through message pipe. There is a group of 64 bytes buffer shared by endpoint0 sending and receiving.

Endpoint1 and endpoint2 and endpoint3 each have a sending pipe (IN) and a receiving pipe (OUT), and the transmitter and receiver each have a single 64-byte buffer or a double 64-byte buffer for USB transfers.

Endpoint4 has a sending pipe (IN) and a receiving pipe (OUT), and the transmitter and receiver each have a single 64-byte buffer for USB transfers.

Each endpoint has a control register (UEPn_CTRL) and a transmittal length register (UEPn_T_LEN) (n = 0/1/2/3/4) to configure the data toggle flag, handshake response, transmittal length, etc.

The pull-up resistor of the USB device port is enabled or disabled by the software settings. If you set the bUC_DEV_PU_EN bit in the USB_CTRL register, the USB device function start. At this time, the CH559 internal DP or DM pin connected to the pull-up resistor according to the bUD_LOW_SPEED bit.

When the event of bus reset, suspend or resume is detected or USB transfer completion, the USB SIE will generate the corresponding interrupt flag and interrupt request. The use program can directly query USB interrupt flag register (USB_INT_FG) or query in the interrupt service routine (ISR). If UIF_TRANSFER bit is valid, you should also do the corresponding processing according to the value of interrupt status register (USB_INT_ST) and MASK_UIS_ENDP and MASK_UIS_TOKEN. If you configure the bUEP_R_TOG bit for each endpoint OUT transaction, you can query the U_TOG_OK bit or bUIS_TOG_OK bit to determine whether the current received data toggle match with the expected, and if the toggle is OK, the data is valid otherwise the data should be discarded. After processing the send or receive data, you need to correct the toggle of the endpoint for the next data packet to send or receive data packet match-detect. Setting the bUEP_AUTO_TOG bit may enable toggle turn automatically after transfer completion.

The prepared data to send by each endpoint are placed in the buffer of each endpoint, and the length of data should be written to the transmittal length register of each endpoint (UEPn_T_LEN). The receive data by each endpoint are placed in the buffer of each endpoint, and the length of receive data of each endpoint is all placed in the USB receiving data length register (USB_RX_LEN).

Table 16.3.1 List of Device registers

SFR Name	Address	Description	Reset Value
UEP1_CTRL	D2h	Endpoint1 control	0000 0000b
UEP1_T_LEN	D3h	Endpoint1 transmittal length	0xxx xxxxb
UEP2_CTRL	D4h	Endpoint2 control	0000 0000b
UEP2_T_LEN	D5h	Endpoint2 transmittal length	0000 0000b
UEP3_CTRL	D6h	Endpoint3 control	0000 0000b
UEP3_T_LEN	D7h	Endpoint3 transmittal length	0xxx xxxxb
UEP0_CTRL	DCh	Endpoint0 control	0000 0000b
UEP0_T_LEN	DDh	Endpoint0 transmittal length	0xxx xxxxb
UEP4_CTRL	DEh	Endpoint4 control	0000 0000b
UEP4_T_LEN	DFh	Endpoint4 transmittal length	0xxx xxxxb
UDEV_CTRL	E4h	USB device physical port control	0100 x000b
UEP4_1_MOD	2446h	Endpoint4/1 mode control	0000 0000b
UEP2_3_MOD	2447h	Endpoint2/3 mode control	0000 0000b
UEP0_DMA_H	2448h	High byte of 16-bit endpoint 0/4 buffer start address	000x xxxxb
UEP0_DMA_L	2449h	Low byte of 16-bit endpoint 0/4 buffer start address	xxxx xxx0b
UEP0_DMA	2448h	16-bit endpoint 0/4 buffer start address, (consists of UEP0_DMA_L and UEP0_DMA_H).	xxxxh
UEP1_DMA_H	244Ah	High byte of 16-bit endpoint1 buffer start address	000x xxxxb
UEP1_DMA_L	244Bh	Low byte of 16-bit endpoint1 buffer start address	xxxx xxx0b
UEP1_DMA	244Ah	16-bit endpoint1 buffer start address, (consists of UEP1_DMA_L and UEP1_DMA_H)	xxxxh
UEP2_DMA_H	244Ch	High byte of 16-bit endpoint2 buffer start address	000x xxxxb
UEP2_DMA_L	244Dh	Low byte of 16-bit endpoint2 buffer start address	xxxx xxx0b
UEP2_DMA	244Ch	16-bit endpoint2 buffer start address, (consists of UEP2_DMA_L and UEP2_DMA_H)	xxxxh
UEP3_DMA_H	244Eh	High byte of 16-bit endpoint3 buffer start address	000x xxxxb
UEP3_DMA_L	244Fh	Low byte of 16-bit endpoint3 buffer start address	xxxx xxx0b
UEP3_DMA	244Eh	16-bit endpoint 3 buffer start address, (consists of UEP3_DMA_L and UEP3_DMA_H)	xxxxh
pUEP*	254*h	After setting bit bXIR_XSFR, the pdata will be addressed in xSFR, which is faster than xdata adderssing.	

UEPn_CTRL - Endpoint n control

Bit	Name	Access	Description	Reset Value
7	bUEP_R_TOG	RW	Expected data toggle flag of USB endpoint n receiving (SETUP/OUT): 1 = expected DATA1. 0 = expected DATA0.	0
6	bUEP_T_TOG	RW	Prepared data toggle flag of USB endpoint n transmittal (IN):	0

			1 = send DATA1.	
			0 = send DATA 0 .	
5	Reserve	RO	Reserve	0
			Enable automatic toggle after successful transfer	
4	bUEP_AUTO_T	DW	completion on endpoint $1/2/3$:	0
4	OG	K W	1 = automatic toggle.	0
			0 = manual toggle.	
2	LUED D DEC1	DW	High bit of handshake response type for USB	0
5	UUEF_K_KESI	K W	endpoint n receiving (SETUP/OUT).	0
2	LUED D DESO	DW	Low bit of handshake response type for USB endpoint	0
2	UUEP_K_KESU	K W	n receiving (SETUP/OUT).	
1	LUED T DESI	DW	High bit of handshake response type for USB	0
1	UUEr_1_KESI	κw	endpoint n transmittal (IN).	0
0	LUED T DESO	DW	Low bit of handshake response type for USB endpoint	0
	UUEF_1_KESU	ΚW	n transmittal (IN).	0

MASK_UEP_R_RES consists of bUEP_R_RES1 bit and bUEP_R_RES0 bit, used to indicate handshake response type for USB endpoint n receiving (SETUP/OUT):

00 = ACK

01 = timeout/ no response (for Isochronous transfers)

10 = NAK

11 = STALL

MASK_UEP_T_RES consist of bUEP_T_RES1 bit and bUEP_T_RES0 bit, used to indicate handshake response type for USB endpoint n transmittal (IN):

00 = DATA0/DATA1 and expected host ACK

01 = DATA0/DATA1 and expected host no response (for Isochronous transfers)

10 = NAK

11 = STALL

UEPn_T_LEN - Endpoint1 transmittal length

Bit	Name	Access	Description	Reset Value
[7:0]	bUEPn_T_LE N	DW	Endpoint n transmittal length, $(n = 0/1/3/4)$.	xxh
	bUEP2_T_LE N	κw	Endpoint2 transmittal length.	00h

UDEV_CTRL - USB device physical port control

Bit	Name	Access	Description	Reset Value
7	Reserve	RO	Reserve	0
6	bUD_RECV_D IS	RW	Disable USB physical port receiver: 1 = disable receiver. 0 = enable receiver.	1
5	bUD_DP_PD_ DIS	RW	Disable USB DP pull-down resistor: 1 = disable. 0 = enable pull-down,	0

4	bUD_DM_PD_ DIS	RW	Disable USB DM pull-down resistor: 1 = disable. 0 = enable pull-down.	0
3	bUD_DIFF_IN	R0	Current DP/DM difference input status.	Х
2	bUD_LOW_SP EED	RW	Enable USB physical port low speed: 1 = low speed (1.5Mbps). 0 = full speed (12Mbps).	0
1	bUD_GP_BIT	RW	General purpose bit. It can be set and clear.	0
0	bUD_PORT_E N	RW	Enable USB physical port I/O: 1 = enable. 0 = disable.	0

UEP4_1_MOD - Endpoint 4/1 mode control

Bit	Name	Access	Description	Reset Value
7	bUEP1_RX_E N	RW	Enable USB endpoint1 receiving (OUT): 1 = enable. 0 = disable.	0
6	bUEP1_TX_E N	RW	Enable USB endpoint1 transmittal (IN): 1 = enable. 0 = disable.	0
5	Reserve	RO	Reserve	0
4	bUEP1_BUF_ MOD	RW	Buffer mode control of USB endpoint1	0
3	bUEP4_RX_E N	R0	Enable USB endpoint4 receiving (OUT): 1 = enable. 0 = disable.	0
2	bUEP4_TX_E N	RW	Enable USB endpoint4 transmittal (IN): 1 = enable. 0 = disable.	0
[1:0]	Reserve	RO	Reserve	00b

Configuration of buffer mode of endpoint 0 and 4 by bUEP4_RX_EN bit and bUEP4_TX_EN bit. Refer to the following table.

bUEP4_RX_ EN	bUEP4_TX_ EN	Description: buffer start address is UEP0_DMA
0	0	Single 64 bytes buffer for endpoint 0 receiving & transmittal (OUT & IN endpoint).
1	0	Single 64 bytes buffer for endpoint 0 receiving & transmittal (OUT & IN endpoint) and for endpoint 4 receiving (OUT endpoint), total = 128 bytes
0	1	Single 64 bytes buffer for endpoint 0 receiving & transmittal (OUT & IN endpoint) and for endpoint 4 transmittal (IN endpoint), total = 128 bytes
1	1	Single 64 bytes buffer for endpoint 0 receiving & transmittal (OUT & IN endpoint) + 64 bytes buffer for endpoint 4 receiving (OUT endpoint) + 64

Table 16.3.2 buffer mode of endpoint 0 and 4

bytes buffer for endpoint 4 transmittal (IN endpoint), total is 192bytes. Start address UEP0_DMA+0: endpoint 0 receiving & transmittal
Start address UEP0_DMA+64: endpoint 4 receiving.
Start address UEP0_DMA+128: endpoint 4 transmittal.

UEP2_3_MOD - endpoint 2/3 mode control

Bit	Name	Access	Description	Reset Value
7	bUEP3_RX_E N	RW	Enable USB endpoint 3 receiving (OUT): 1 = enable. 0 = disable.	0
6	bUEP3_TX_E N	RW	Enable USB endpoint 3 transmittal (IN): 1 = enable. 0 = disable.	0
5	Reserve	RO	Reserve	0
4	bUEP3_BUF_ MOD	RW	Buffer mode control of USB endpoint 3.	0
3	bUEP2_RX_E N	R0	Enable USB endpoint 2 receiving (OUT): 1 = enable. 0 = disable.	0
2	bUEP2_TX_E N	RW	Enable USB endpoint 2 transmittal (IN): 1 = enable. 0 = disable.	0
1	Reserve	RO	Reserve	0
0	bUEP2_BUF_ MOD	RW	Buffer mode control of USB endpoint 2.	0

Configuration buffer mode of endpoint 1 or 2 or 3 by bUEPn_RX_EN bit and bUEPn_TX_EN bit and bUEPn_BUF_MOD bit, (n = 1/2/3). Refer to the following table.

Table	16.3.3	buffer	mode	of end	point 1	n (n =	1/2/3
rabic	10.5.5	June	moue	or chu	point	n (n –	· 1/4/5)

bUEPn_RX_E	bUEPn_TX_E	bUEPn_BUF_MO	Description: huffer start address is LIEPn DMA
Ν	N	D	
0	0	X	Disable endpoint and disable buffer.
1	0	0	Single 64 bytes buffer for receiving (OUT)
1	0	1	Dual 64 bytes buffer by toggle bit bUEP_R_TOG selection for receiving (OUT), total = 128bytes.
0	1	0	Single 64 bytes buffer for transmittal (IN).
0	1	1	Dual 64 bytes buffer by toggle bit bUEP_T_TOG selection for transmittal (IN), total = 128bytes.
1	1	0	Single 64 bytes buffer for receiving (OUT) + Single 64 bytes buffer for transmittal (IN), total = 128bytes.
1	1	1	Dual 64 bytes buffer by bUEP_R_TOG selection for receiving (OUT) + dual 64 bytes buffer by bUEP_T_TOG selection for transmittal (IN), total = 256bytes.

	Start address UEPn_DMA+0: endpoint receiving when
	bUEP_R_TOG bit is 0.
	Start address UEPn_DMA+64: endpoint receiving
	when bUEP_R_TOG bit is 1.
	Start address UEPn_DMA+128: endpoint transmitttal
	when bUEP_T_TOG bit is 0.
	Start address UEPn_DMA+192: endpoint transmitttal
	when bUEP T TOG bit is 1.

Bit	Name	Access	Description	Reset Value
			High byte of 16-bit endpoint n buffer start address.	
[7:0]	UEPn_DMA_H	RW	Among them, the low 5 bits are effective and the high	xxh
			3 bits are fixed at 0.	
			Low byte of 16-bit endpoint n buffer start address.	
[7:0]	UEPn_DMA_L	RW	Among them, the high 7 bits are effective and the low	xxh
			1 bit are fixed at 0, and only even address.	

Note: receiving data length $> = \min(\text{ maximum packet length possible+2 bytes}, 64 bytes)$

16.4 USB Host Control Registers

CH559 provides a set of bidirectional host endpoints in host mode, including a transmittal endpoint (OUT) and a receiver endpoint (IN). The maximum data packet size for all endpoints is 64 bytes for control / interrupt / bulk / isochronous transactions.

After processing the USB things initiated by the host, CH559 will automatically set the interrupt flag UIF_TRANSFER bit. The user program can read the interrupt flag register (USB_INT_FG) by the way of query or interrupt, and deal with according to the interrupt flags. If the UIF_TRANSFER bit is valid, it also needs to analyze the interrupt status register (USB_INT_ST) and deal with based on the current handshake response PID (MASK_UIS_H_RES) for USB host transmittal.

If you configure the bUEP_R_TOG bit for host receiver endpoint (IN), you can query the U_TOG_OK bit or bUIS_TOG_OK bit to determine whether the current received data toggle match the expected, and if the toggle is OK, the data is valid otherwise the data should be discarded. After processing the send or receive data, you need to correct the toggle of the endpoint for the next data packet to send or receive data packet to match-detect. Setting the bUEP_AUTO_TOG bit can be achieved toggle turn automatically after transfer completion.

The UH_EP_PID register for host mode is alternate-function of the UEP2_T_LEN register for device mode, which is used to configure the endpoint number of the target device and the PID of USB packet. The data buffer start address for USB data packet following SETUP/OUT packet is filled in UH_TX_DMA register and the length of data should be written to the transmit length register of host endpoint (UH_TX_LEN). The receiving data packet start address by host endpoint is placed in the UH_RX_DMA register, and the length of receive data of host endpoint is placed in the USB receiving data length register (USB_RX_LEN).

Name	Address	Description	Reset Value
UH_SETUP	D2h	Host auxiliary setup	0000 0000b
UH_RX_CTRL	D4h	Host receiver endpoint control	0000 0000b

Table 16.4.1 USB host registers list

UH_EP_PID	D5h	Host endpoint and token PID	0000 0000b
UH_TX_CTRL	D6h	Host transmittal endpoint control	0000 0000b
UH_TX_LEN	D7h	Host endpoint transmittal length	0xxx xxxxb
USB_HUB_ST	DBh	USB host hub status (Read-only)	0000 0000b
UHUB0_CTRL	E4h	USB hub0 control	0100 x000b
UHUB1_CTRL	E5h	USB hub1 control	1100 x000b
UH_EP_MOD	2447h	Host endpoint mode control	0000 0000b
UH_RX_DMA_H	244Ch	High byte of host receiving endpoint buffer start address	000x xxxxb
UH_RX_DMA_L	244Dh	Low byte of host receiving endpoint buffer start address	xxxx xxx0b
UH_RX_DMA	244Ch	16-bit host receiving endpoint buffer start address (consists of UH_RX_DMA_L and UH_RX_DMA_H)	xxxxh
UH_TX_DMA_H	244Eh	High byte of host transmittal endpoint buffer start address	000x xxxxb
UH_TX_DMA_L	244Fh	Low byte of host transmittal endpoint buffer start address	xxxx xxx0b
UH_TX_DMA	244Eh	16-bit host transmittal endpoint buffer start address (consists of UH_TX_DMA_L and UH_TX_DMA_H).	xxxxh
pUH_*	254*h	After setting bit bXIR_XSFR, the pdata will be addressed in xSFR, which is faster than xdata addressing.	

UH_SETUP - host auxiliary setup

Bit	Name	Access	Description	Reset Value
7	bUH_PRE_PID_ EN	RW	USB host PRE PID enable for low speed device via hub: 1 = enable PRE. 0 = disable. Cannot operate low device via hub.	0
6	bUH_SOF_EN	RW	USB host automatic SOF enable: 1 = enable. 0 = disable. Send SOF manually.	0
[5:0]	Reserve	RO	Reserve	00h

UH_F	RX_	CTRL -	host	receiver	endpoint	control
------	-----	--------	------	----------	----------	---------

Bit	Name	Access	Description	Reset Value
7	bUH_R_TOG	RW	Expected data toggle flag of host receiving (IN): 1 = DATA1. 0 = DATA0.	0
[6:5]	Reserve	RO	Reserve	00b
4	bUH_R_AUTO_ TOG	RW	Enable automatic toggle after successful transfer completion: 1 = automatic toggle. 0 = manual toggle.	0
3	Reserve	RO	Reserve	0
2	bUH_R_RES	RW	Prepared handshake response type for host receiving (IN): 1 = no response, time out to device, for isochronous	0

			transactions (not for endpoint 0). 0 = ACK (ready).	
[1:0]	Reserve	RO	Reserve	00b

UH_EP_PID - host endpoint and token PID

Bit	Name	Access	Description	Reset Value
[7:4]	MASK_UH_TO KEN	RW	Token PID for USB host transfer.	0000b
[3:0]	MASK_UH_EN DP	RW	Endpoint number for USB host transfer.	0000b

UH_TX_CTRL - host transmittal endpoint control

Bit	Name	Access	Description	Reset Value
7	Reserve	RO	Reserve	0
6	bUH_T_TOG	RW	Prepared data toggle flag of host transmittal (SETUP/OUT): 1 = DATA1. 0 = DATA0.	0
5	Reserve	RO	Reserve	0
4	bUH_T_AUTO_ TOG	RW	Enable automatic toggle after successful transfer completion: 1 = automatic toggle. 0 = manual toggle.	0
[3:1]	Reserve	RO	Reserve	000b
0	bUH_T_RES	RW	Expected handshake response type for host transmittal (SETUP/OUT): 1 = no response, time out from device, for isochronous transactions (not for endpoint 0). 0 = ACK (ready).	0

UH_TX_LEN - host endpoint transmittal length

Bit	Name	Access	Description	Reset Value
[7:0]	UH_TX_LEN	RW	Host endpoint transmittal length.	xxh

USB_HUB_ST - USB host hub status

Bit	Name	Access	Description	Reset Value
7	bUHS_H1_ATT ACH	RO	Device attached status on USB hub1 HP/HM, (equal to bUMS_H1_ATTACH): 1 = connect. 0 = disconnect.	0
6	bUHS_HM_LEV EL	RO	HM level saved at device attached to USB hub1: 1 = high level. 0 = low level.	0

5	bUHS_HP_PIN	RO	Current HP pin level: 1 = high level. 0 = low level	0
4	bUHS_HM_PIN	RO	0 = 10 W level. Current HM pin level: 1 = high level. 0 = 10 w level.	0
3	bUHS_H0_ATT ACH	RO	Device attached status on USB hub0 DP/DM, (equal to bUMS_H0_ATTACH): 1 = connect. 0 = disconnect.	0
2	bUHS_DM_LEV EL	RO	DM level saved at device attached to USB hub0: 1 = high level. 0 = low level.	0
1	bUHS_DP_PIN	RO	Current DP pin level: 1 = high level. 0 = low level.	0
0	bUHS_DM_PIN	RO	Current DM pin level: 1 = high level. 0 = low level.	0

UHUBn_CTRL - USB hub n control (n = 0.1)

Bit	Name	Access	Description	Reset Value
7	Reserve	RO	Reserve for SFR UHUB0_CTRL	0
7	bUH1_DISABL E	RW	Disable USB hub1 pin: 1 = disable hub1 and releasing HP/HM pin. 0 = enable hub1 and using HP/HM pin.	1
6	bUH_RECV_DI S	RW	Disable USB HUBn receiver: 1 = disable hub receiver. 0 = enable hub receiver.	1
5	bUH_DP_PD_DI S	RW	Disable USB DP or HP pull-down resistor: 1 = disable. 0 = enable pull-down.	0
4	bUH_DM_PD_D IS	RW	Disable USB DM or HM pull-down resistor: 1 = disable. 0 = enable pull-down.	0
3	bUH_DIFF_IN	R0	Current DP/DM or HP/HM difference input status	Х
2	bUH_LOW_SPE ED	RW	Enable USB hub low speed: 1 = low speed (1.5Mbps). 0 = full speed (12Mbps).	0
1	bUH_BUS_RES ET	RW	Control USB hub bus reset: 1 = force bus reset. 0 = normal.	0
0	bUH_PORT_EN	RW	Enable USB hub port: 1 = enable port, automatic disabled if USB device	0

	detached.	
	0 = disable.	

Bit	Name	Access	Description	Reset Value
7	Reserve	RO	Reserve	0
6	bUH_EP_TX_E N	RW	Enable USB host endpoint transmittal: 1 = enable. 0 = disable.	0
5	Reserve	RO	Reserve	0
4	bUH_EP_TBUF _MOD	RW	Buffer mode control of USB host transmittal endpoint	0
3	bUH_EP_RX_E N	RO	Enable USB host endpoint receiving: 1 = enable. 0 = disable.	0
[2:1]	Reserve	RO	Reserve	00b
0	bUH_EP_RBUF _MOD	RW	Buffer mode of USB host receiving endpoint	0

UH_EP_MOD - host endpoint mode control

Configuration buffer mode of USB host transmittal endpoint by bUH_EP_TX_EN bit and bUH_EP_TBUF_MOD bit. Refer to the following table.

Table 16.4.2 List of USB host trans	smittal endpoint buffer
-------------------------------------	-------------------------

bUH_EP_TX_ EN	bUH_EP_TBUF_M OD	Description : buffer start address is UH_TX_DMA
0	Х	Disable endpoint and disable buffer.
1	0	Single 64 bytes buffer for transmittal (OUT endpoint).
1	1	Dual 64 bytes buffer by toggle bit bUH_T_TOG selection for transmittal (OUT endpoint), total = 128bytes. Select the first 64 bytes of buffer if bUH_T_TOG bit is 0. Select the last 64 bytes of buffer if bUH_T_TOG bit is 1.

Configuration buffer mode of USB host receiving endpoint by bUH_EP_TX_EN bit and bUH_EP_TBUF_MOD bit. Refer to the following table.

Table 16.4.3 USB host receiving endpoint buffer list

bUH_EP_RX_	bUH_EP_RBUF_M	Description : buffer start address is UH RX DMA
EN	OD	
0	Х	Disable endpoint and disable buffer.
1	0	Single 64 bytes buffer for receiving (IN endpoint).
1	1	Dual 64 bytes buffer by toggle bit bUH_R_TOG selection for
		receiving (IN endpoint), total = 128bytes.
		Select the first 64 bytes of buffer if bUH_R_TOG bit is 0.
		Select the last 64 bytes of buffer if bUH_R_TOG bit is 1.

UH_RX_DMA - 16-bit host receiving endpoint buffer start address

Bit	Name	Access	Description	Reset Value
-----	------	--------	-------------	-------------

[7:0]	UH_RX_DMA_ H	RW	High byte of host receiving endpoint buffer start address. Among them, the low 5 bits are effective and the high 3 bits are fixed at 0.	xxh
[7:0]	UH_RX_DMA_ L	RW	Low byte of host receiving endpoint buffer start address. Among them, the high 7 bits are effective and the low 1 bit are fixed at 0, and only even address.	xxh

UH_TX_DMA - 16-bit host transmittal endpoint buffer start address

Bit	Name	Access	Description	Reset Value
[7:0]	UH_TX_DMA_ H	RW	High byte of host transmittal endpoint buffer start address. Among them, the low 5 bits are effective and the high 3 bits are fixed at 0.	xxh
[7:0]	UH_TX_DMA_ L	RW	Low byte of host transmittal endpoint buffer start address. Among them, the high 7 bits are effective and the low 1 bit are fixed at 0, and only even address.	xxh

17.LED Display Control Interface

17.1 LED Control Card

CH559 provides LED display control interface, built-in 4-level FIFO, It supports DMA and interrupt, which saves the processing time for CPU. It also supports 1/2/4 data line.

Name	Address	Description	Reset Value
LED_STAT	2880h	LED status	010x 0000b
LED_CTRL	2881h	LED control	0000 0010b
LED_FIFO_CN	2882h	LED FIFO count (Read-only)	0000 0000b
LED_DATA	2882h	LED data (Write-only)	xxxx xxxxb
LED_CK_SE	2883h	LED clock divisor setting	0001 0000b
LED_DMA_AH	2884h	High byte of 16-bit DMA address	000x xxxxb
LED_DMA_AL	2885h	Low byte of 16-bit DMA address	xxxx xxx0b
LED_DMA	2884h	16-bit DMA address (consists of LED_DMA_AL and LED_DMA_AH)	xxxxh
LED_DMA_CN	2886h	DMA remainder word count	xxxx xxxxb
LED_DMA_XH	2888h	High byte of 16-bit auxiliary buffer DMA address	000x xxxxb
LED_DMA_XL	2889h	Low byte of 16-bit auxiliary buffer DMA address	xxxx xxx0b
LED_DMA_X	2888h	16-bit auxiliary buffer DMA address (consists of LED_DMA_XL and LED_DMA_XH)	xxxxh
pLED_*	298*h	After setting bit bXIR_XSFR, the pdata will be addressed in xSFR, which is faster than xdata addressing.	

T 1 1 1 7 1 1	T • .	CI ED	1' 1	• • • •	• ,
Table $1/.1.1$	List	of LED	display	/ interface	register

LED_STAT - LED status

Bit	Name	Access	Description	Reset Value
7	bLED_IF_DMA	RW	DMA complete interrupt flag.	0

	_END		1 = DMA completion.	
			0 = no interrupt.	
			write 1 to clear or write LED_DMA_CN to clear	
	HED ELEO E		FIFO empty flag:	
6	ULED_ITIO_E MDTV	RO	1 = FIFO is empty.	0
	MIP I I		0 = FIFO is not empty.	
			Request FIFO data flag($FIFO < = 2$):	
5	bLED_IF_FIFO_	DW	1 = FIFO is not full.	0
5	REQ	ĸw	0 = FIFO is full.	0
			Write 1 to clear.	
4	bLED_CLOCK	R0	Current LED clock level.	Х
3	Reserve	RO	Reserve	0
[2.0]	MASK_LED_FIF	P0	Current LED EIEO count	000b
[2:0]	O_CNT	KÜ		0000

LED_CTRL - LED control

Bit	Name	Access	Description	Reset Value
7	bLED_CHAN_ MOD1	RW	LED channel mode high bit.	0
6	bLED_CHAN_ MOD0	RW	LED channel mode low bit.	0
5	bLED_IE_FIFO_ REQ	RW	Enable interrupt for FIFO $< = 2$: 1 = enable interrupt for FIFO $< = 2$. 0 = disable.	0
4	bLED_DMA_E N	RW	DMA enable and DMA interrupt enable for LED: 1 = enable. 0 = disable.	0
3	bLED_OUT_EN	RW	LED output enable: 1 = enable. 0 = disable.	0
2	bLED_OUT_PO LAR	RW	LED output polarity: 1 = invert. 0 = pass.	0
1	bLED_CLR_AL L	RW	Force clear FIFO and count of LED, need software clear.	1
0	bLED_BIT_OR DER	RW	LED bit data order: 1 = MSB first. 0 = LSB first.	0

Table 17.1.2 LED channel mode

bLED_CHAN_M	bLED_CHAN_M	Description
OD1	OD0	Description
0	0	Single channel output, LED0
0	1	Dual channels output, LED0/1

1	0	4 channels output, LED0~3. The data from LED_DMA buffer take turns to LED0~LED3.
	1	4 channels output and LED2/3 from auxiliary buffer, LED0~3.
1		LED0 and LED1 data are from LED_DMA buffer.
		LED2 and LED3 data are from LED_DMA_X buffer.

LED_FIFO_CN - LED FIFO count

Bit	Name	Access	Description	Reset Value
[7:0]	LED_FIFO_CN	RO	Current FIFO count. Only the low 3 bits are effective and the high 5 bits are fix at 0.	00h

LED_DATA - LED data

Bit	Name	Access	Description	Reset Value
[7:0]	LED_DATA	WO	LED data port for FIFO.	xxh

LED_CK_SE - LED clock divisor setting

Bit	Name	Access	Description	Reset Value
[7:0]	LED_CK_SE	RW	Set LED output clock divisor	10h

LED_DMA - 16-bit DMA address

Bit	Name	Access	Description	Reset Value
[7:0]	LED_DMA_AH	RW	RWSFR high byte of 16-bit DAM address. This byte is the initial value of the high byte of the 16-bit DMA address and then the DMA address is increased automatically. 	
[7:0]	LED_DMA_AL	DMA_AL RW SFR low byte of 16-bit DAM address. This byte is the initial value of the high byte of the 16-bit DMA address and then the DMA address is increased automatically. The high 7 bits are valid, and the lowest bit is fixed by 0. Only for even address.		xxh

LED_DMA_X - 16-bit auxiliary buffer DMA address

Bit	Name	Access	Description	Reset Value
[7:0]	LED_DMA_XH	RW	SFR high byte of 16-bit DAM address. This byte is the initial value of the high byte of the 16-bit auxiliary buffer DMA address and then the DMA	xxh

			address is increased automatically. Only the lowest 5 bits are valid, and high 3 bits is fixed by 0.	
[7:0]	LED_DMA_XL	RW	SFR low byte of 16-bit DAM address. This byte is the initial value of the high byte of the 16-bit auxiliary buffer DMA address and then the DMA address is increased automatically. The high 7 bits are valid, and the lowest bit is fixed by 0. Only for even address.	xxh

LED_DMA_CN - DMA remainder word count

Bit	Name	Access	Description	Reset Value
[7:0]	LED_DMA_CN	RW	DMA remainder word count, just main buffer and exclude auxiliary buffer, automatic decreasing after DMA	00h

17.2 LED display control application

(1) Configure the LEDC and LED0~LED3 pins for the output mode and set the I/O port drive capability.

(2) Configure the LED_CK_SE register, selecting LED output clock divisor.

(3) Write the LED_DMA register as DMA data buffer start address which is main buffer.

(4) If the channel mode of LED is 3, you need write LED_DMA_X register, which auxiliary buffer.

(5) Configure the LED_CTRL register, select channel mode, output polarity, bit data order, interrupt and

DMA, etc...For example, LED_CTRL = bLED_CHAN_MOD0 | bLED_DMA_EN | bLED_OUT_EN.

(6) Configure DMA remainder word count, and enable DMA. Or you can send data by FIFO.

(7) You can use the query or interrupt mode to deal with the corresponding flag status.

18. Parameter

18.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
ТА	Operating temperature	-40	85	°C
TS	Storage temperature	-55	125	°C
VDD33	Internal operating power supply voltage (VDD33 is connected with power, GND is connected with the ground)	-0.4	3.6	V
VIN5	External input supply voltage(VIN5 is connected with power, GND is connected with the ground)	-0.4	5.6	V
VIO5	Voltage on the input or output pins support 5V	-0.4	VIN5+0.4	V
VIO3	Voltage on the input or output pins not support 5V	-0.4	VDD33+0. 4	V

18.2 DC Electrical Characteristics (TA = 25° C,VIN5 = 5V or 3.3V, VDD33 = 3.3V, Fsys = 12MHz)

Symbol Parameter Min Type Max Unit

VDD33	internal j	power voltage	2.85	3.3	3.6	V
VIN5 external input supply voltage	External capacitor connected to VDD33 pin	3.6	5	5.5	V	
	VDD33 pin connected to VIN5 pin	2.85	3.3	3.6	v	
ICC	The total v	working current	4	8	50	mA
ISLP	The total	sleep current		0.1	0.2	mA
VIL	Input low voltage		-0.4		0.8	V
VIH	Input h	nigh voltage	2.0		VDD33+0.4	V
VOL	Output low vo	bltage ($I_{IL} = 4mA$)			0.4	V
VOH	Output high voltage ($I_{OH} = 4mA$)		VDD33-0.4			V
IIN	The input current without pull-up resistor		-5	0	5	uA
IUP	The input curren	t with pull-up resistor	20	40	80	uA
IDN	The input current with pull-down resistor		-20	-40	-80	uA
IUPX	The input current with pull-up resistor from low to high		200	300	500	uA
Vpot	Power-on	reset threshold	2.4	2.55	2.7	V

Note: All the current of pull-up are pulled up to VDD33, not VIN5

18.3 AC Electrical Characteristics ($TA = 25^{\circ}$	C,VIN5 = 5V or 3.3V, VDD33	= 3.3V, Fsys $= 12$ MHz)
--	----------------------------	--------------------------

Symbol	Parameter	Min	Туре	Max	Unit
Fxt	External clock input frequency	4	12	20	MHz
Fosc	Internal clock frequency	11.82	12	12.18	MHz
Fpll	Frequency after PLL	24	288	350	MHz
Fush/y	USB sampling clock frequency for the USB host	47.98	48	48.02	MHz
1 4504X	USB sampling clock frequency for the USB device	47.04	48	48.96	MHz
Feve	System frequency(VDD33 > = 3V)	1	12	56	MHz
1898	System frequency(VDD33 <3V)	1	12	50	MHz
Tpor	Power on reset delay	15	17	20	mS
Trst	External input valid reset signal width	70	100	200	nS
Trdl	Thermal reset delay	35	60	100	uS
Twdc	Watchdog overflow/Timer calculation formula	262144*((0x100 = WDC)G_COUNT)) / Fsys
Tusp	Automatically hang up time in USB host mode	2	3	4	mS
rusp	Automatically hang up time in USB device mode	4	5	6	mS
Twak	The time of waking up from sleep mode	1	40	100	uS

19. Revision history

Version	Date	Description
V1.0	2014.09.26	Initial release
V1.1	2015.08.14	Update: 12.5.2, 14.4
V1.2	2015.09.25	Update: 1, 4, 16.3, 17, 18.3
V1.3	2016.07.22	Update: 12.5
V1.4	2017.02.09	Update: 2,6,7