Specification of Thermoelectric Module

TETC1-12706

Description

The 127 couples, $40 \text{ mm} \times 40 \text{ mm}$ size single module which is made of our high performance ingot to achieve superior cooling performance and 74°C or larger delta Tmax, is designed for superior cooling and heating applications. The module is able to run million thermal cycles in 70°C temperature change range with less 3% degrading. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- High effective cooling and efficiency.
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Temperature stabilizer
- Liquid cooling
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th(C)	27	90	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	74	100	Temperature Difference between cold and hot side of the module
			when cooling capacity is zero at cold side
U _{max} (Voltage)	16.8	20.3	Voltage applied to the module at DT _{max}
I _{max(} amps)	6.3	6.3	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	66	81.0	Cooling capacity at cold side of the module under DT=0 °C
AC resistance(ohms)	2.05	2.45	The module resistance is tested under AC
Tolerance (%)	±10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Positive lead wire (Red) 20 AWG leads, PVC insulated Negative lead wire (Black) 125±3 Cold side:Tc See ordering option See ordering option See ordering option

Manufacturing Options

A. Solder:

1. T100: BiSn (Melting Point=138 °C)

2. T200: CuSn (Melting Point=227 °C)

B. Sealant:

1. NS: No sealing (Standard)

2. SS: Silicone sealant

3. EPS: Epoxy sealant

4. Customer specify sealing

C. Ceramics:

1. AlO :Alumina (Al₂O₃, white 96%)

2. AlN: Aluminum Nitride

3. AL: Aluminum substrate

D. Ceramics Surface Options:

1. Blank ceramics (not metalized)

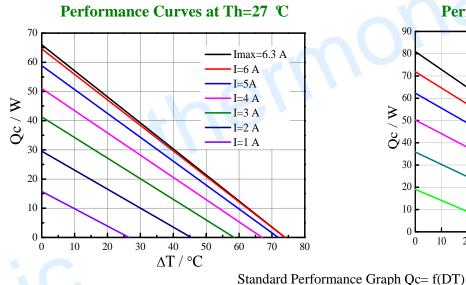
2. Metalized (Copper-Nickel plating)

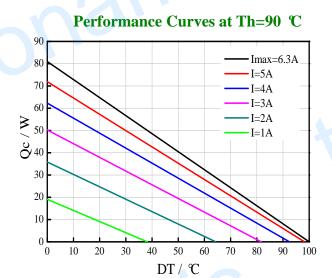
Naming for the Module

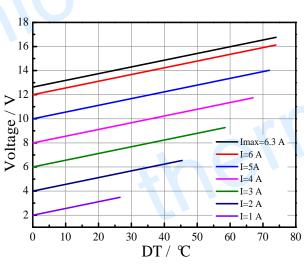
Suffix	Thickness (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length	
TF	0:3.8±0.1	0:0.05/0.05	125±3/Specify	
TF	1:3.8±0.05	1:0.025/0.025	125±3/Specify	
TF	2:3.8±0.025	2:0.015/0.015	125±3/Specify	
Eg. TF01: Thickness 3.8±0.1(mm) and Flatness 0.025/0.025(mm)				

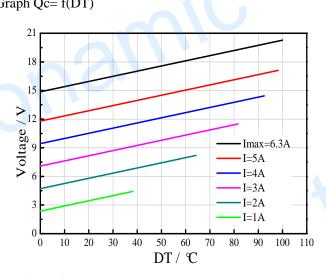
Ordering Option

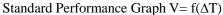
TETC1-12706- X -	X - X - X
To I	Ceramics
	Flatness/ Parallelism
	Sealant
L	Solder
TETC1-12706-T10	00 -NS -TF01 -AlO
T100: BiSn (Tmelt=138°C	2

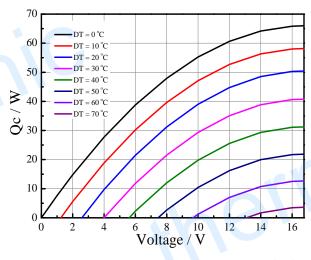

T100: BiSn (Tmelt=138°C)

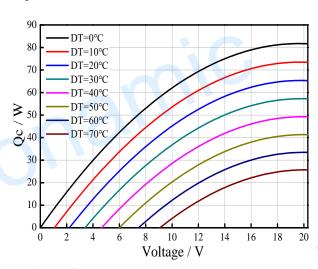

NS: No sealing AlO: Alumina (Al2O3, white 96%)
TF01: Thickness ±0.1(mm) and Flatness/Parallelism 0.025/0.025 (mm)

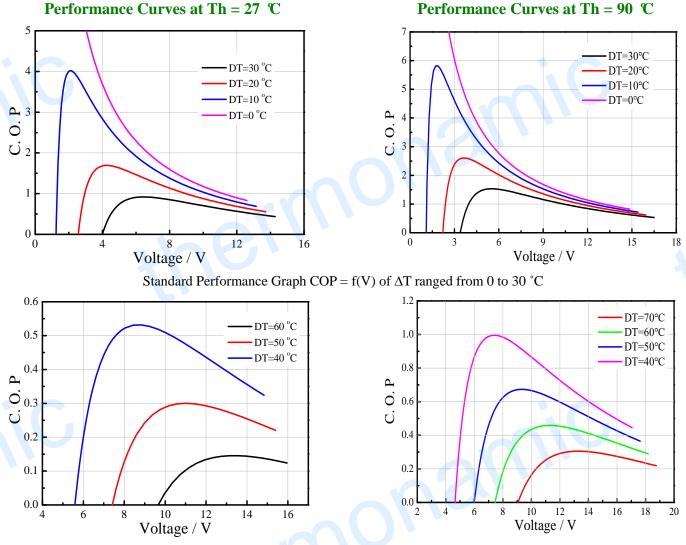

Operation Cautions


- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- ullet Operation below I_{max} or V_{max}
- Work under DC

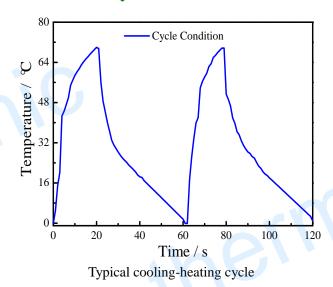

Performance Curve

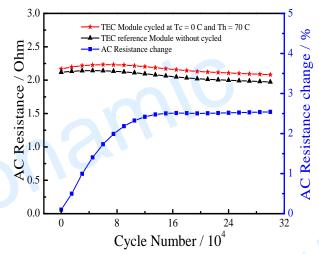






Standard Performance Graph Qc = f(V)




Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V \times I).

A typical 127 couples module is fabricated by the unique "soft" process and has demonstrated that it only has 2.5% degrading after 300,000 thermal cycling. The below graphic shows that in beginning 120,000 cycles, it degrade about 2.5%, and then go on stable with very tiny degrading in further 180,000 thermal cycles. It is derived out that the modules can go over million thermal cycles.

TEC Thermal Cycle Lifetime Test

The Chart for AC Resistance and AC Resistance Changes vs. Cycle Number