THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

SL6609

DIRECT CONVERSION FSK DATA RECEIVER

This device is an advanced direct conversion receiver for operation up to 470 MHz . The device integrates all functions to translate a binary FSK modulated RF signal into a demodulated data stream. Adjacent channel rejection is provided using tuneable gyrator filters. To assist operation in the presence of large interfering signals both RF and audio AGC functions are provided.

The device also includes a 1 volt regulator capable of sourcing up to 5 mA , a battery flag and the facility of incorporating a more complex post detection filter off-chip. Both battery flag and data outputs have open collector outputs to ease their interface with other devices.

FEATURES

- Very low power operation - typ 3.0 mW
- Single cell operation for most of the device. Limited functional blocks operating via an inverter
- Superior sensitivity of -130 dBm
- Operation at wide range of paging data rates 512, 1200, 2400 baud
- On chip 1 volt regulator
- Small package offering SSOP

APPLICATIONS

- Credit card pagers
- Watch pagers
- Small form factor pagers i.e. PCMCIA
- Low data rate data receivers i.e. Security/remote control

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Supply voltage	6 V
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Fig. 2 Block diagram of SL6609

SL6609

ELECTRICAL CHARACTERISTICS
These characteristics are guaranteed over the following conditions unless otherwise stated:
Tamb $=25^{\circ} \mathrm{C}, \mathrm{VCC} 1=1.3 \mathrm{~V}, \mathrm{VCC} 2=2.7 \mathrm{~V}$

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
VCC1 - Supply voltage	21	0.95	1.3	2.8	V	VCC1 \leq VCC2 - 0.7 volts
VCC2 - Supply voltage	13	1.8	2.7	3.5	V	
ICC1-Supply current	21,27,28		1.5	1.8	mA	Includes 500μ A IRF. Does not include regulator supply. Audio AGC inactive
ICC2 - Supply current	11,13,14		550	700	$\mu \mathrm{A}$	Batt flag \& Data O/P high Pin 27 voltage: 0.3-1.3V
Power down ICC1	21,27,28			1	$\mu \mathrm{A}$	
Power down ICC2	11,13,14			8	$\mu \mathrm{A}$	
1 volt regulator	23	0.95	1.0	1.05	V	I Load = 3mA. Ext PNP. $B=100, V_{C E}=0.1$ volt
Band gap voltage reference	19	1.15	1.21	1.27	V	
Band gap current source	19			${ }_{2}^{20}$	$\mu \mathrm{A}$	
Voltage reference	6	0.93	1.0	1.07	V	
Voltage reference sink/source	6			10	$\mu \mathrm{A}$	VCC 1 > 1.1V
1 volt regulator load current		0.25	3	5	mA	
Turn on Time			5		mS	Stable data o/p when 3 dB above sensitivity. C_{BG} and $\mathrm{C}_{\mathrm{VR}}=2.2 \mu \mathrm{~F}$
Turn off Time			1		mS	Fall to 10% of steady state current C_{BG} and $\mathrm{C}_{\mathrm{VR}}=2.2 \mu \mathrm{~F}$
Detector output current	17		+/-4		$\mu \mathrm{A}$	
RF current source						
Current Source (RFAMP)	27	450	520	600	$\mu \mathrm{A}$	Pin 27 voltage: 0.3 -1.3V
Decoder						
Sensitivity		40			$\mu \mathrm{Vrms}$	Signal injected at TPX and TPY B.E.R. ≤ 1 in 30 5 KHz deviation @ 500 bits/sec BRF capacitor $=2 n F$
Output mark space ratio	14	7:9		9:7		
Data O/P Sink Current	14	100		500	$\mu \mathrm{A}$	Output logic low
Data O/P Leakage Current	14			1.0	$\mu \mathrm{A}$	Output logic high

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed over the following conditions unless otherwise stated:
Tamb $=25^{\circ} \mathrm{C}, \mathrm{VCC} 1=1.3 \mathrm{~V}, \mathrm{VCC} 2=2.7 \mathrm{~V}$

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
Battery Economy		$\left(\mathrm{V}_{\mathrm{CC2}}-0.3\right)$	$\begin{gathered} 0.05 \\ 6 \end{gathered}$			
Input logic high	10				V	Powered Up
Input logic low	10			0.3	V	Powered Down
Input current	10			1	$\mu \mathrm{A}$	Powered Up
Input current	10			8	$\mu \mathrm{A}$	Powered down transient initial
Battery Flag Input						
Input current	20			1		$\mu \mathrm{A}$
Battery Flag Output		100				
Battfl Sink Current	11			500	$\mu \mathrm{A}$	
Battfl leakage current	11			1	$\mu \mathrm{A}$	$(\text { VBATT-VR) }<-20 \mathrm{mV}$
Mixers		34		41	dB	LO inputs driven in parallel with 50 mVRMS @ 50 MHZ .IF = 2 KHz See Figs.8a, 8b See Fig. 9 Equal to Pin 21 (VCC1)
Gain to "IF Test"						
RF input impedance	24, 26					
LO input impedance	3, 5					
LO DC bias voltage	3,5				V	
Audio AGC						
Max Audio AGC Sink Current	28	45	65	85	$\mu \mathrm{A}$	

RECEIVER CHARACTERISTICS (GPS Demonstration board)
Measurement conditions unless stated $\mathrm{Vcc} 1=1.3 \mathrm{~V}, \mathrm{~V} \mathrm{Cc} 2=2.7 \mathrm{~V}, \mathrm{LNA}=18 \mathrm{~dB}$ Gain, 2dB Noise figure,
Carrier frequency 153 MHz , BER 1 in 30 , Tamb $=25^{\circ} \mathrm{C}$

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
Sensitivity		-130	-127.5	-125	dBm	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-18 \mathrm{dBm} \end{aligned}$
		-128	-125.5	-123	dBm	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-18 \mathrm{dBm} \end{aligned}$
Intermodulation		54	55		dB	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-18 \mathrm{dBm} \end{aligned}$
Adjacent channel		68	72.5		dB	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-18 \mathrm{dBm} \\ & \text { Channel spacing } 25 \mathrm{kHz} \end{aligned}$
Centre frequency acceptance		+/-2.0	$\begin{gathered} +/-2.5 \\ +/-2 \end{gathered}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-18 \mathrm{dBm} \end{aligned}$
Deviation acceptance			$\begin{gathered} +/-2.5 \\ +/-2 \end{gathered}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-18 \mathrm{dBm} \end{aligned}$

SL6609

RECEIVER CHARACTERISTICS (GPS Demonstration board)
Measurement conditions unless stated $\mathrm{Vcc1}=1.3 \mathrm{~V}, \mathrm{Vcc} 2=2.7 \mathrm{~V}, \mathrm{LNA}=18 \mathrm{~dB}$ Gain, 2dB Noise figure,
Carrier frequency 282MHz, BER 1 in $\mathbf{3 0}$, $\mathrm{Tamb}=25^{\circ} \mathrm{C}$

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
Sensitivity		-130	-128.5	-125	dBm	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
		-128	-126	-123	dBm	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4.0 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Intermodulation		54	55.5		dB	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Adjacent channel		68	72		dB	$512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz}$ $\mathrm{LO}=-15 \mathrm{dBm}$ Channel spacing 25 kHz
Centre frequency acceptance		+/-2.0	$\begin{gathered} +/-2.5 \\ +/-2 \end{gathered}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Deviation acceptance			$\begin{gathered} +/-2.5 \\ +/-2 \end{gathered}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 512 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$

RECEIVER CHARACTERISTICS

Measurement conditions unless stated $\mathrm{V}_{\mathrm{Cc} 1}=1.3 \mathrm{~V}, \mathrm{Vcc2}=2.7 \mathrm{~V}, \mathrm{LNA}=18 \mathrm{~dB}$ Gain, 2dB Noise figure,
Carrier frequency 470 MHz , BER 1 in 30 , $\mathrm{Tamb}=25^{\circ} \mathrm{C}$

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
Sensitivity		-127	-125	-122	dBm	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Intermodulation		50	53		dB	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Adjacent channel		65	70		dB	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \\ & \text { Channel spacing } 25 \mathrm{kHz} \end{aligned}$
Centre frequency acceptance			+/-2		kHz	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Deviation acceptance			+/-2		kHz	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$

OPERATION OF SL6609

The SL6609 is a Direct Converson Receiver designed for use up to 470 MHz . It is available in a 28 pin SSOP package and it integrates all the facilities required for the conversion of an RF FSK signal to a base-band data signal.

Low Noise Amplifier

To achieve optimum performance it is necessary to incorporate a Low Noise RF Amplifier at the front end of the receiver. This is easily biased using the on chip voltage and current sources provided.

All voltages and current sources used for bias of the RF amplifier, receiver and mixers should be RF decoupled using suitable capacitors (see fig. 4 for a suitable Low-NoiseAmplifier).

Local Oscillator

The Local Oscillator signal is applied to the device in phase quadrature. This can be achieved with the use of two RC networks operating at the $-3 \mathrm{~dB} / 45^{\circ}$ transfer characteristic, giving a full 90° phase differential between the LO ports of the device. Each LO port of the device also requires an equal level of drive from the Oscillator. (see Fig.5).

Gyrator Filters

The on chip filters include an adjustable gyrator filter. This may be adjusted with the use of an additional resistor between pin 4 and GND. This allows flexibility of filter characterstics and also allows for compensation for possible process variations.

Audio AGC

The Audio AGC fundamentally consists of a current sink which is controlled by the audio (baseband data) signal. It has three parameters that may be controlled by the user. These are the Attack (turn on) time, Decay (duration) time and Threshold level (see Fig. 6 and 7). See Application note for details.

Regulator

The on chip regulator must be used in conjunction with a suitable PNP transistor to achieve regulation. As the transistor forms part of the regulator feedback loop the transistor should exhibit the following characteristics:-
$\mathrm{H}_{\mathrm{FE}}>=100$ for $\mathrm{V}_{\mathrm{CE}}>=0.1 \mathrm{~V}$

Pin Number	Pin Name	Pin Description
1	TPX	X channel pre-gyrator filter test-point. This can be used for input and output
2	RFIADJ	RF current source adjustment pin
3	LOY	LO input channel Y
4	GYRI	Gyrator current adjust pin
5	LOX	LO input channel X
6	VR	VREF 1.0 V internal signal ground
7	TPY	Y channel pre-gyrator filter test point, input or output
8	GTHADJ	Audio AGC gain and threshold adjust. RSSI signal indicator
9	TCADJ	Audio AGC time constant adjust
10	BEC	Battery economy control
11	BATTFL	Battery flag output
12	TPLIMY	Y channel limiter (post gyrator filter) test point, output only
13	VCC2	Supply connection
14	DATAOP	Data output pin
15	TPLIMX	X channel limiter (post gyrator filter) test point, output only
16	BRF2	Bit rate filter 2, input to data output stage
17	BRF1	Bit rate filter 1, output from detector
18	DIG GND	Digital ground
19	VBG	Bandgap voltage output
20	VBATT	Battery flag input voltage
21	VCC1	Supply connection
22	REGCNT	1V regulator control external PNP drive
23	VREG	1V regulator output voltage
24	MIXB	Mixer input B
25	GND	Ground
26	MIXA	Mixer input A
27	IRFAMP	Current source for external LNA. Value of current output will decrease at high mixer
28		input signal levels due to RF AGC
		AGCOUT
		Audio AGC output current

COMPONENTS LIST FOR APPLICATION BOARD At $282 \mathrm{MHz}, 25 \mathrm{kHz}$ Channel Spacing.

Resistors		C18	1n
R1	open circuit	C19	not used
R2	open circuit	C20	1n
R3	220	C21	1 n
R4	100k	C22	not used
R5	1k	C23	1n
R6	1k	C24	1 n
R7	220	C25	1 n
R8	open circuit	C26	$5 \mathrm{p} 6{ }^{(4)}$
R9	220k	C27	1 n
R10	1M	C28	1n
R11	100k ${ }^{(6)}$	C29	100p
R12	not used	C30	2 u 2
R13	2k7	C31	2 u 2
R14	4k7	C32	4p7
R15	4k7	C33	4p7
R16	33k	C34	3p3
R17	not used ${ }^{(3)}$	C35	not used
R18	$0 \mathrm{R}{ }^{(3)}$	VC1	1-10p
R19	10k	VC2	1-10p
R20	680	VC3	1-10p
R21	1k		
R22	open circuit	Induc	
		L1	$100 \mathrm{n}^{(4)}$
Capacitors		L2	not used
C1	1 n	L3	470n
C2	2p7	L4	$39 n$
C3	4 p 7	L5	680n
C4	1 n		
C5	2p7		
C6	2 L 2	Activ	onents
C7	1 n	Q1	FMMT589
C8	100n	Q2	BFT25A
C9	$1 \mathrm{n}{ }^{(2)}$	Q3	BFT25A
C10	2 u 2	Q4	not used
C11	100n	Q5	BFT25A
C12	1 n	D1	Panasonic MA862 ${ }^{(5)}$
C13	1 n		
C14	1 n	Misc	
C15	1 n	T1	30nH 1:1
C16	1 n		Coilcraft M1686-A
C17	1 n	Xtal	5th Overtone
C17a	1 n		94.075 MHz

Notes

1. The values of R13 is determined by the set-up procedure. See Application Note.
2. The value of C 9 is determined by the output data rate. Use $2 n F$ for 512bps, 1 nF for 1200bps and 470pF for 2400bps.
3. R17 (See figure.6) forms a part of the audio AGC circuit and is determined by the voltage drop required to make the diode D1, conduct to give the RF attenuation required. R17 should be sufficiently large to ensure the voltage at pin 28 does not drop below 200 mV . The maximum AGC current expected is $85 \mu \mathrm{~A}$. For the characteristics of the audio AGC current source see figure 7. If the audio AGC is not required then the current source (Pin 28) may be disabled by connecting Pin 9 (TCADJ) to VR (pin 6) and by connecting Pin 28
(IAGCOUT) to Vcc1., (R18). The voltage at Pin 8 may still be used as an RSSI. R9, C8, C14, C19, R17 and D1 may then be omitted. See figure. 6 for AGC component values.
4. L1and C26 form the low noise matching network for the RF amplifier. The values given are for the RF amplifier specified in the Applications Circuit with no Audio AGC connected. i.e. R17 and D1 omitted.
5. Suggested diode for use with the Audio AGC circuit (see figure.6) (D1 is not included on the general demonstration circuit).
6. The value of R11 is dependent on the data output load. R11 should allow sufficient current to drive the data output load.

COMPONENTS LIST FOR APPLICATION BOARD At $470 \mathrm{MHz}, 25 \mathrm{kHz}$ Channel Spacing.
(LO circuit is 50Ω network as in Fig. 5 - crystal oscillator not specified)

Resistors

R1	open circuit
R2	open circuit
R3	100
R4	100 k
R5	100
R6	100
R7	100
R8	open circuit
R9	220 k
R10	1 M
R11	$100 \mathrm{k}^{(2)}$
R12	$300{ }^{(3)}$
R13	open circuit ${ }^{(1)}$
R14	$4 \mathrm{k}^{2}$
R15	$4 \mathrm{k}^{2}$
R16	33 k
R17	open circuit ${ }^{(4)}$
R18	$0 \mathrm{R}^{(4)}$
R22	open circuit

Capacitors

C1	1 n
C2	3.3 pF
C3	1 n
C4	1 n
C5	3.9 pF
C6	$2 \mathrm{u2}$
C7	1 n
C8	100 n
C9	$1 n^{(2)}$
C10	$2 \mathrm{u2}$
C11	100 n
C12	1 n
C13	1 n

Notes

1. The values of R13 is determined by the set-up procedure. See Application Note.
2. The value of "C9" is determined by the output data rate. Use 2 nF for 512 bps , 1 nF for 1200 bps and 470 pF for 2400bps.
3. R12 \& Q4 form a dummy load for the regulator. Permitted load currents for the regulator are $250 \mu \mathrm{~A}$ to 5 mA . The 1 V regulator (output pin 23) can be switched off by connecting pin 23 directly to VCC2. Q1, Q4, R12 and C12 must then be omitted
4. R17 forms a part of the audio AGC circuit (see figure 6) and is determined by the voltage drop required to make the PIN diode D1, conduct to give the RF attenuation required. R17 should be sufficiently large to ensure the voltage at pin 28 does not drop below 200 mV . The maximum AGC current expected is $85 \mu \mathrm{~A}$. For the characteristics of the audio AGC current source see

Fig. 4 RF Amplifier

Fig. 5 LO Network

SL6609

Fig. 6 AGC Schematic

Fig. 7 Audio AGC current vs. IP power at $25^{\circ} \mathrm{C}$

S11	FREQ 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 500.000 550.000 600.000 650.000 700.000 750.000 800.000 850.000 900.000 950.000 1000.00	MAG 0.969 0.958 0.942 0.917 0.893 0.858 0.832 0.806 0.781 0.755 0.743 0.725 0.703 0.680 0.666 0.653 0.636 0.615 0.604 0.600	$\begin{gathered} \text { ANG } \\ -7.20 \\ -14.45 \\ -20.59 \\ -26.40 \\ -33.26 \\ -39.84 \\ -44.78 \\ -49.01 \\ -54.00 \\ -59.53 \\ -64-35 \\ -68.43 \\ -73.01 \\ -78.74 \\ -83.76 \\ -87.48 \\ -91.32 \\ -97.17 \\ -102.84 \\ -105.23 \end{gathered}$	

Fig.8a SL6609 Mixer A input S-Parameters

S11	$\begin{gathered} \text { FREQ } \\ 50.000 \\ 100.000 \\ 150.000 \\ 200.000 \\ 250.000 \\ 300.000 \\ 350.000 \\ 400.000 \\ 450.000 \\ 500.000 \\ 550.000 \\ 600.000 \\ 650.000 \\ 700.000 \\ 750.000 \\ 800.000 \\ 850.000 \\ 900.000 \\ 950.000 \\ 1000.00 \end{gathered}$	MAG 0.970 0.960 0.945 0.919 0.902 0.872 0.850 0.825 0.803 0.776 0.760 0.739 0.717 0.698 0.683 0.666 0.659 0.647 0.637 0.634	$\begin{gathered} \text { ANG } \\ -7.06 \\ -13.83 \\ -19.90 \\ -25.70 \\ -32.18 \\ -38.03 \\ -43.07 \\ -48.27 \\ -53.58 \\ -58.49 \\ -63.08 \\ -67.98 \\ -72.63 \\ -76.96 \\ -81.09 \\ -85.49 \\ -89.51 \\ -93.90 \\ -98.42 \\ -102.40 \end{gathered}$	

Fig. 8 b SL6609 Mixer B input S-Parameters

S11	FREQ 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 500.000 550.000 600.000 650.000 700.000 750.000 800.000 850.000 900.000 950.000 1000.00	MAG 0.993 0.995 0.997 0.997 0.996 0.986 0.965 0.936 0.902 0.872 0.838 0.804 0.798 0.810 0.784 0.779 0.790 0.788 0.768 0.743	$\begin{gathered} \text { ANG } \\ -4.17 \\ -8.43 \\ -12.88 \\ -17.57 \\ -22.63 \\ -28.16 \\ -33.87 \\ -39.17 \\ -43.88 \\ -48.54 \\ -52.81 \\ -56.60 \\ -59.47 \\ -65.19 \\ -71.49 \\ -75.97 \\ -82.54 \\ -91.16 \\ -100.20 \\ -108.52 \end{gathered}$	

Fig. 9 SL6609 LO X, Y inputs S-Parameters

Fig. 10 AC parameters vs. supply and temperature

Conditions:- 282MHz GPS demonstration board i.e. 18 dB LNA, 2dB noise figure, carrier frequency 282MHz, 1200bps baud rate, 4kHz deviation frequency BER 1 in 30.

Fig. 11 DC parameters vs. supply and temperature (IP3 vs audio AGC both on and off)

Conditions:- ICC1 includes $500 \mu \mathrm{~A}$ LNA current but does not include the regulator supply (audio AGC inactive). ICC2 measured with BATT FLAG and DATA O/P HIGH, $\mathrm{Fc}=\mathbf{2 8 2 M H z}$.

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

28-LEAD SHR UNK MINIATURE PLASTIC DIL (SSOP)-NP 28

ORDERING INFORMATION

SL6609 / KG / NPDS - SSOP devices in anti-static sticks
SL6609 / KG / NPDE - SSOP devices in tape and reel

HEADQUARTERS OPERATIONS
GEC PLESSEY SEMICONDUCTORS
Cheney Manor, Swindon,
Wiltshire SN2 2QW, United Kingdom
Tel: (0793) 518000
Fax: (0793) 518411
GEC PLESSEY SEMICONDUCTORS
P.O. Box 660017

1500 Green Hills Road,
Scotts Valley, California 95067-0017,
United States of America.
Tel: (408) 4382900
Fax: (408) 4385576

CUSTOMER SERVICE CENTRES

- FRANCE \& BENELUX Les Ulis Cedex Tel: (1) 64462345 Fax : (1) 64460607
- GERMANY Munich Tel: (089) 3609 06-0 Fax : (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel (408) 4382900 Fax: (408) 4387023.
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
-SWEDEN Stockholm, Tel: 4687029770 Fax: 4686404736
- UK, EIRE, DENMARK, FINLAND \& NORWAY

Swindon Tel: (0793) 518510 Fax : (0793) 518582
These are supported by Agents and Distributors in major countries world-wide.
© GEC Plessey Semiconductors 1994 Publication No. DS3821 Issue No. 2.7 April 1994

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded tis a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

http://www.zarlink.com

World Headquarters - Canada

Tel: +1 (613) 5920200
Fax: +1 (613) 5921010

North America - West Coast

Tel: (858) 675-3400
Fax: (858) 675-3450

Asia/Pacific

Tel: +65 3336193
Fax: +65 3336192

North America - East Coast

Tel: (978) 322-4800
Fax: (978) 322-4888

Europe, Middle East, and Africa (EMEA)

Tel: +44 (0) 1793518528
Fax: +44 (0) 1793518581

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink Semiconductor's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} \mathrm{C}$ components conveys a licence under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ System, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2001, Zarlink Semiconductor Inc. All rights reserved.

